Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The 'living' micro-robot that could detect diseases in humans

Sea Lamprey1: a Sea Lamprey mouth, close up
Copyright 'Great Lakes Fishery Commission'
Sea Lamprey1: a Sea Lamprey mouth, close up

Copyright 'Great Lakes Fishery Commission'

Abstract:
A tiny prototype robot that functions like a living creature is being developed which one day could be safely used to pinpoint diseases within the human body.

Called 'Cyberplasm', it will combine advanced microelectronics with latest research in biomimicry (technology inspired by nature). The aim is for Cyberplasm to have an electronic nervous system, 'eye' and 'nose' sensors derived from mammalian cells, as well as artificial muscles that use glucose as an energy source to propel it.

The 'living' micro-robot that could detect diseases in humans

Swindon, UK | Posted on March 29th, 2012

The intention is to engineer and integrate robot components that respond to light and chemicals in the same way as biological systems. This is a completely innovative way of pushing robotics forward.

Cyberplasm is being developed over the next few years as part of an international collaboration funded by the Engineering and Physical Sciences Research Council (EPSRC) in the UK and the National Science Foundation (NSF) in the USA. The UK-based work is taking place at Newcastle University. The project originated from a 'sandpit' (idea gathering session) on synthetic biology jointly funded by the two organisations.

Cyberplasm will be designed to mimic key functions of the sea lamprey, a creature found mainly in the Atlantic Ocean. It is believed this approach will enable the micro-robot to be extremely sensitive and responsive to the environment it is put into. Future uses could include the ability to swim unobtrusively through the human body to detect a whole range of diseases.

The sea lamprey has a very primitive nervous system, which is easier to mimic than more sophisticated nervous systems. This, together with the fact that it swims, made the sea lamprey the best candidate for the project team to base Cyberplasm on.

Once it is developed the Cyberplasm prototype will be less than 1cm long. Future versions could potentially be less than 1mm long or even built on a nanoscale.

"Nothing matches a living creature's natural ability to see and smell its environment and therefore to collect data on what's going on around it," says bioengineer Dr Daniel Frankel of Newcastle University, who is leading the UK-based work.

Cyberplasm's sensors are being developed to respond to external stimuli by converting them into electronic impulses that are sent to an electronic 'brain' equipped with sophisticated microchips. This brain will then send electronic messages to artificial muscles telling them how to contract and relax, enabling the robot to navigate its way safely using an undulating motion.

Similarly, data on the chemical make-up of the robot's surroundings can be collected and stored via these systems for later recovery by the robot's operators.

Cyberplasm could also represent the first step on the road to important advances in, for example, advanced prosthetics where living muscle tissue might be engineered to contract and relax in response to stimulation from light waves or electronic signals.

"We're currently developing and testing Cyberplasm's individual components," says Daniel Frankel. "We hope to get to the assembly stage within a couple of years. We believe Cyberplasm could start being used in real-world situations within five years".

The UK element of the Cyberplasm project is a three-year initiative that is receiving EPSRC funding of just over £298,000.

The Cyberplasm team includes:

Professor Joseph Ayers, Northeastern University, USA (animal robots expert)

Professor Vlad Parpura, University of Alabama, USA (neuroscientist)

Professor Chris Voigt, MIT, USA (synthetic biologist)

Dr Daniel Frankel, Newcastle University (bioengineer).

####

About Engineering and Physical Sciences Research Council
EPSRC is the main UK government agency for funding research and training in engineering and the physical sciences, investing more than £800 million a year in a broad range of subjects – from mathematics to materials science, and from information technology to structural engineering. www.epsrc.ac.uk

About NSF

NSF is an independent federal agency created by the US Congress in 1950. With an annual budget of about $6.9 billion (FY 2010), it is the funding source for approximately 20 per cent of all federally-supported basic research conducted by America's colleges and universities. In many fields, such as mathematics, computer science and the social sciences, NSF is the major source of federal backing. www.nsf.gov

For more information, please click here

Contacts:
EPSRC Press Office

44 01-793-444-404

Dr Daniel Frankel
School of Chemical Engineering and Advanced Materials
Newcastle University
Tel:44 0191-222-6782

Copyright © Engineering and Physical Sciences Research Council

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information on the synthetic biology sandpit that led to this collaboration between EPSRC and NSF visit:

Related News Press

Synthetic Biology

Researchers of the University of Tartu create a centre for developing designer cells with new functions April 8th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

New tool could help reshape the limits of synthetic biology: The 'telomerator' reshapes synthetic yeast chromosome into more flexible, realistic form, redefining what geneticists can build November 3rd, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Nanomedicine

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Effective Nano-Micelles Designed in Iran to Treat Cancer May 20th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Sensors

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Graphene enables tunable microwave antenna May 15th, 2015

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Discoveries

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Announcements

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanobiotechnology

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project