Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UF researchers develop plant-based technology that helps biofuels, may fight cancer

Abstract:
For the first time, University of Florida researchers have developed plant-based technology that could reduce America's dependence on foreign oil and may also help treat cancer.

UF researchers develop plant-based technology that helps biofuels, may fight cancer

Gainesville, FL | Posted on March 29th, 2012

Known as lignin nanotubes, these cylindrical containers are smaller than viruses and tiny enough to travel through the body, carrying cancer patients' medicine. They can be created in biorefineries from lignin, a plant substance that is a byproduct of bioethanol production.

Bioethanol is a renewable alternative to fossil fuel created by fermenting sugar — such as that from sugarcane and sweet sorghum juices, stalks and stems.

"We're looking at biomedical applications whereby these nanotubes are injected in the body," said Wilfred Vermerris, an associate professor in UF's agronomy department and Genetics Institute who was part of the team that developed the nanotubes. The team's work is described in a March issue of the journal Nanotechnology.

Carbon-based nanotubes, which are the kind used today, cost around $500 a gram, and nanotechnology drug delivery has been projected to be a $220 billion market by 2015.

Nanotubes offer an advantage over radiation or traditional chemotherapy because they have a protective shell that keeps the drugs they contain from affecting healthy parts of the body, such as hair or intestinal lining, said Vermerris, a member of UF's Institute of Food and Agricultural Sciences.

As with current carbon nanotubes, cancer-fighting drugs can be enclosed in the plant-based nanotubes and sent to target specific tumors, he said.

But, the researcher said, unlike currently used carbon nanotubes, lignin nanotubes are flexible and lack sharp edges. That means they're expected to have fewer, if any, of the toxicity issues associated with current varieties.

"It is also much easier to chemically modify the lignin nanotubes so that they can locate their intended targets like homing devices," he said.

Vermerris envisions nanotubes as a way to reduce the cost of biofuel production.

"By selling the nanotubes for biomedical applications, an additional revenue stream is generated for the biorefinery that can offset some of the processing costs," he said. "That essentially reduces the price of the fuels and makes them more competitive with petroleum-based fuel."

Luisa Amelia Dempere, an associate engineer and director of the Major Analytical Instrumentation Center in UF's College of Engineering, guided the analysis and characterization of the lignin nanotubes as part of the research team.

She called the development of the lignin nanotubes "quite significant" and noted their ability to break down in the environment as another advantage over current nanotubes.

"They are taking something from the waste stream, like lignin is for a lot of industries, and making it into something that can be useful and then can degrade back into the environment," Dempere said. "This is probably a material that can be called green and sustainable because it comes from nature and goes back to nature."

UF has applied for a patent on the technology.

Vermerris said his research is now testing the technology in living cells in the lab as a first step toward tests in humans in the near future.

The research was funded by IFAS and the U.S. Department of Agriculture.

####

For more information, please click here

Contacts:
Writer
Robert H. Wells

352-273-3569

Source
Wilfred Vermerris

352-273-8162

Contact
Luisa A. Dempere

352-392-6985

Copyright © University of Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Nanomedicine

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Patents/IP/Tech Transfer/Licensing

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic