Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UF researchers develop plant-based technology that helps biofuels, may fight cancer

Abstract:
For the first time, University of Florida researchers have developed plant-based technology that could reduce America's dependence on foreign oil and may also help treat cancer.

UF researchers develop plant-based technology that helps biofuels, may fight cancer

Gainesville, FL | Posted on March 29th, 2012

Known as lignin nanotubes, these cylindrical containers are smaller than viruses and tiny enough to travel through the body, carrying cancer patients' medicine. They can be created in biorefineries from lignin, a plant substance that is a byproduct of bioethanol production.

Bioethanol is a renewable alternative to fossil fuel created by fermenting sugar — such as that from sugarcane and sweet sorghum juices, stalks and stems.

"We're looking at biomedical applications whereby these nanotubes are injected in the body," said Wilfred Vermerris, an associate professor in UF's agronomy department and Genetics Institute who was part of the team that developed the nanotubes. The team's work is described in a March issue of the journal Nanotechnology.

Carbon-based nanotubes, which are the kind used today, cost around $500 a gram, and nanotechnology drug delivery has been projected to be a $220 billion market by 2015.

Nanotubes offer an advantage over radiation or traditional chemotherapy because they have a protective shell that keeps the drugs they contain from affecting healthy parts of the body, such as hair or intestinal lining, said Vermerris, a member of UF's Institute of Food and Agricultural Sciences.

As with current carbon nanotubes, cancer-fighting drugs can be enclosed in the plant-based nanotubes and sent to target specific tumors, he said.

But, the researcher said, unlike currently used carbon nanotubes, lignin nanotubes are flexible and lack sharp edges. That means they're expected to have fewer, if any, of the toxicity issues associated with current varieties.

"It is also much easier to chemically modify the lignin nanotubes so that they can locate their intended targets like homing devices," he said.

Vermerris envisions nanotubes as a way to reduce the cost of biofuel production.

"By selling the nanotubes for biomedical applications, an additional revenue stream is generated for the biorefinery that can offset some of the processing costs," he said. "That essentially reduces the price of the fuels and makes them more competitive with petroleum-based fuel."

Luisa Amelia Dempere, an associate engineer and director of the Major Analytical Instrumentation Center in UF's College of Engineering, guided the analysis and characterization of the lignin nanotubes as part of the research team.

She called the development of the lignin nanotubes "quite significant" and noted their ability to break down in the environment as another advantage over current nanotubes.

"They are taking something from the waste stream, like lignin is for a lot of industries, and making it into something that can be useful and then can degrade back into the environment," Dempere said. "This is probably a material that can be called green and sustainable because it comes from nature and goes back to nature."

UF has applied for a patent on the technology.

Vermerris said his research is now testing the technology in living cells in the lab as a first step toward tests in humans in the near future.

The research was funded by IFAS and the U.S. Department of Agriculture.

####

For more information, please click here

Contacts:
Writer
Robert H. Wells

352-273-3569

Source
Wilfred Vermerris

352-273-8162

Contact
Luisa A. Dempere

352-392-6985

Copyright © University of Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Nanomedicine

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

JPK reports on how the University of Glasgow is using their NanoWizard® AFM and CellHesion module to study how cells interact with their surroundings August 2nd, 2017

Discoveries

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Announcements

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Patents/IP/Tech Transfer/Licensing

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Energy

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project