Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Magnetic Field Researchers Target Hundred-Tesla Goal: Previous world record shattered during six-experiment pulse

A control room screen offers images of the magnet area.
A control room screen offers images of the magnet area.

Abstract:
Researchers at Los Alamos National Laboratory's biggest magnet facility today met the grand challenge of producing magnetic fields in excess of 100 tesla while conducting six different experiments. The hundred-tesla level is roughly equivalent to 2 million times Earth's magnetic field.

Magnetic Field Researchers Target Hundred-Tesla Goal: Previous world record shattered during six-experiment pulse

Los Alamos, NM | Posted on March 22nd, 2012

"This is our moon shot, we've worked toward this for a decade and a half," said Chuck Mielke, director of the Pulsed Field Facility at Los Alamos.

The team used the 100-tesla pulsed, multi-shot magnet, a combination of seven coils sets weighing nearly 18,000 pounds and powered by a massive 1,200-megajoule motor generator. There are higher magnetic fields produced elsewhere, but the magnets that create such fields blow themselves to bits in the process. The system at Los Alamos is instead designed to work nondestructively, in the intense 100-tesla realm, on a regular basis. The Los Alamos facility is one of three campuses forming the National High Magnetic Field Laboratory (NHMFL).

Today's 100.75-tesla performance produced research results for scientific teams from Rutgers University, École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), McMaster University, University of Puerto Rico, University of Minnesota, Cambridge University, University of British Columbia, and Oxford University. The science that we expect to come out varies with the experiment, but can be summarized as:

Quantum Phase transitions and new ultra high field magnetic states
Electronic Structure determination
Topologically protected states of matter

"Congratulations to the Los Alamos team and our collaborators," said LANL Director Charlie McMillan. "Their innovations and creativity are not only breaking barriers in science, but solving national problems in the process."

In recent experiments, said Mielke, "the new magnet has allowed our users and staff to pin down the upper critical field of a new form of superconductor, discover two new magnetically ordered states in a material that has eluded scientists for nearly 30 years, observe magneto-quantum oscillations in a high temperature superconductor to unprecedented resolution, determine a topological state of a new material, and discover a new form of magnetic ordering in an advanced magnetic material."

The LANL team set on August 18 last year a new world record for the strongest magnetic field ever delivered by a nondestructive magnet. The scientists achieved an enormous 97.4 tesla—a magnetic field nearly 100 times more powerful than the giant junkyard car-lifting magnets, and some 30 times stronger than the field delivered during a medical MRI scan. That record was broken this morning as the team ramped up the big magnet again, reaching 98.35 T, with an eye toward the afternoon's 3-digit event.

Mielke said that since the team's latest foray into magnetic fields above 90 tesla, they've demonstrated that they can measure:

Upper critical fields of superconductors—radio frequency contactless conductivity
Quantum magnetic transitions—magnetic susceptibility
Electrical resistivity—magnetotransport
Optical spectroscopy—visible light transmission
Crystallographic length change—fiber-optic dilatometry

"Now, at 100 tesla, we can focusing our efforts to get multiple user experiments completed in single magnet runs on the big magnets since they are so oversubscribed. More than a dozen people are working together to make this happen here at the Laboratory," said Mielke.

The ability to create pulses of extremely high magnetic fields nondestructively provides researchers with an unprecedented tool for studying a range of scientific questions: from how materials behave under the influence of very high magnetic fields, to research into the quantum behavior of phase transitions in solids.

Researchers can explore extremes of low temperature and high magnetic field, which will contribute to our understanding of superconductivity, magnetic-field-induced phase transitions, and so-called quantum critical points, in which small changes in materials properties at very low temperature have dramatic effects on physical behavior. The magnet could also be used as a nanoscale microscope.

The Pulsed Field Facility at Los Alamos is one of three campuses of the National High Magnetic Field Laboratory, the other two being at Florida State University, Tallahassee (continuous fields, magnetic resonance, and general headquarters) and the University of Florida Gainesville (ultra-low temperatures at high magnetic fields). The NHMFL is sponsored primarily by the National Science Foundation, Division of Materials Research, with additional support from the State of Florida and the U.S. Department of Energy. •

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Nancy Ambrosiano
(505) 667-0471/(505) 699-1149

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Take a virtual tour of the NHMFL Pulsed Magnet Laboratory at LANL online here:

Related News Press

News and information

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Imaging

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

The Catholic University of Rome uses the JPK NanoWizard® AFM & CellHesion® systems to understand how cells sense and respond to mechanical stimuli April 5th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

“Cysteine Rose” Wins 2016 Thermo Fisher Scientific Electron Microscopy Image Contest: Thermo Fisher honors Andrea Jacassi of the Italian Institute of Technology for image of cysteine crystals using focused ion beam techniques March 27th, 2017

Laboratories

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Physics

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Govt.-Legislation/Regulation/Funding/Policy

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Emergency Use Authorization for Gene-RADAR® Zika Virus Test: FDA Authorization for the Gene-RADAR® Zika Virus Test on the XPRIZE-Winning Gene-RADAR® Platform April 14th, 2017

Discoveries

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Announcements

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Tools

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

MSP Corporation Announces a New Breakthrough in Monodisperse Droplet Generation April 19th, 2017

Researchers Succeed in Localizing Individual Atoms in Nanostructures Using First Cryo-Transfer LEAP Atom Probe April 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project