Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene: Scientists produce graphene using microorganisms

Image of reduced GO sheets on a SiO2/Si substrate. (a) Optical microscope image; and (b) higher magnification.
Image of reduced GO sheets on a SiO2/Si substrate. (a) Optical microscope image; and (b) higher magnification.

Abstract:
The Graphene Research Group at Toyohashi Tech report on the synthesis of graphene by reducing graphene oxide using microorganisms extracted from a local river.

Graphene: Scientists produce graphene using microorganisms

Toyohashi, Japan | Posted on March 22nd, 2012

The Toyohashi Tech Graphene Research Group at the Electronics Inspired Interdisciplinary Research Institute (EIIRIS) report on an innovative method for producing high quality graphene by reducing graphene oxide flakes using easily extractable microorganisms.

Currently, the chemical reduction of graphene oxide (GO) flakes is the preferred choice for the mass production of graphene. Notably, the critical stage of reducing GO flakes into the 2-dimensional layers of carbon known as graphene involves exposure of the GO to hydrazine. This reduction processes have fundamental limitations for large scale production, in particular because of the hydrazine vapor is highly toxic.

The method developed by the Toyohashi Tech team was inspired by a recent report that graphene oxide behaves as a terminal electron acceptor for bacteria, where the GO is reduced by microbial action in the process of breathing or electron transport. Notably, the Toyohashi Graphene Research Group method is a hybrid approach, where chemically derived graphene oxide flakes are reduced by readily available microorganisms extracted from a river bank near the Tempaku Campus of Toyohashi University of Technology, Aichi, Japan. Raman scattering measurements showed that the GO flakes had indeed been reduced.

####

About Toyohashi University of Technology (Toyohashi Tech)
Founded in 1976, Toyohashi University of Technology is a vibrant modern institute with research activities reflecting the modern era of advanced electronics, engineering, and life sciences.

For more information, please click here

Contacts:
Ms. Junko Sugaya and
Mr. Masashi Yamaguchi
International Affairs Division
TEL: (+81) 0532-44-2042
FAX: (+81)0532-44-6557

Copyright © Toyohashi University of Technology (Toyohashi Tech)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Y. Tanizawa et al 2012 J. Phys.: Conf. Ser. 352 012011 doi:10.1088/1742-6596/352/1/012011:

URL:

Related News Press

News and information

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360ís Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Graphene/ Graphite

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Graphene: Progress, not quantum leaps May 23rd, 2016

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Discoveries

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Announcements

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Nanobiotechnology

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic