Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Quantum plasmons demonstrated in atomic-scale nanoparticles: Positive identification of plasmons in nano particles could open new engineering possibilities at the nanoscale

San Francisco artist Kate Nichols creates structurally colored artwork using Surface Plasmon Resonances, the same phenomenon described by Scholl and Dionne. This image is a selected view from Nichols's two-part installation at The Leonardo Museum. Nature chose the same image to grace the cover of its issue featuring the Scholl/Koh/Dionne research. Credit: Kate Nichols. Through the Looking Glass 1. Silver nanoparticles on glass. 2011. In situ at The Leonardo Museum, Salt Lake City. Photo: Donald Felton/Almac Camera. www.katenicholsstudio.com
San Francisco artist Kate Nichols creates structurally colored artwork using Surface Plasmon Resonances, the same phenomenon described by Scholl and Dionne. This image is a selected view from Nichols's two-part installation at The Leonardo Museum. Nature chose the same image to grace the cover of its issue featuring the Scholl/Koh/Dionne research. Credit: Kate Nichols. Through the Looking Glass 1. Silver nanoparticles on glass. 2011. In situ at The Leonardo Museum, Salt Lake City. Photo: Donald Felton/Almac Camera. www.katenicholsstudio.com

Abstract:
The physical phenomenon of plasmon resonances in small metal particles has been used for centuries. They are visible in the vibrant hues of the great stained-glass windows of the world. More recently, plasmon resonances have been used by engineers to develop new, light-activated cancer treatments and to enhance light absorption in photovoltaics and photocatalysis.

Quantum plasmons demonstrated in atomic-scale nanoparticles: Positive identification of plasmons in nano particles could open new engineering possibilities at the nanoscale

Stanford, CA | Posted on March 21st, 2012

"The stained-glass windows of Notre Dame Cathedral and Stanford Chapel derive their color from metal nanoparticles embedded in the glass. When the windows are illuminated, the nanoparticles scatter specific colors depending on the particle's size and geometry " said Jennifer Dionne, an assistant professor of materials science and engineering at Stanford and the senior author of a new paper on plasmon resonances to be published in the journal Nature. In the study, the team of engineers report the direct observation of plasmon resonances of individual metal particles measuring down to one nanometer in diameter—just a few atoms across.

"For particles smaller than about ten nanometers in diameter, plasmon resonances are poorly understood," said Jonathan Scholl, a doctoral candidate in Dionne's lab and first author of the paper. "This class of quantum-sized metal nanoparticles has been largely under-utilized. Exploring their size-dependent nature could open up some interesting applications at the nanoscale."

Longstanding debate

The science of tiny metal particles has perplexed physicists and engineers for decades. Below a certain threshold, as metallic particles near the quantum scale —about 10 nanometers in diameter — classical physics breaks down. The particles begin to demonstrate unique physical and chemical properties that bulk counterparts of the very same materials do not. A nanoparticle of silver measuring a few atoms across, for instance, will respond to photons and electrons in ways profoundly different from a larger particle or slab of silver.

By clearly illustrating the details of this classical-to-quantum transition, Scholl and Dionne have pushed the field of plasmonics into a new realm that could have lasting consequences for catalytic processes such as artificial photosynthesis, cancer research and treatment, and quantum computing.

"Particles at this scale are more sensitive and more reactive than bulk materials," said Dionne. "But we haven't been able to take full advantage of their optical and electronic properties without a complete picture of the science. This paper provides the foundation for new avenues of nanotechnology entering the 100-to-10,000 atom regime."

Noble metals

In recent years, engineers have paid particular attention to nanoparticles of the noble metals: silver, gold, palladium, platinum and so forth. These metals are well known to support localized surface plasmon resonances, the collective oscillations of electrons at the metal surface in response to light or an electric field.

Other important physical properties can be further driven when plasmons are constrained in extremely small spaces, like the nanoparticles Dionne and Scholl studied. The phenomenon is known as quantum confinement.

Depending on the shape and size of the particle, quantum confinement can dominate a particle's electronic and optical response. This research allows scientists, for the first time, to directly correlate a quantum-sized plasmonic particle's geometry—its shape and size—with its plasmon resonances.

Standing to benefit

Nanotechnology stands to benefit from this new understanding. "We might discover novel electronic or photonic devices based on excitation and detection of plasmons in quantum-sized particles. Alternatively, there could be opportunities in catalysis, quantum optics, and bio-imaging and therapeutics," said Dionne.

Medical science, for instance, has devised a way to use nanoparticles excited by light to burn away cancer cells, a process known as photothermal ablation. Metal nanoparticles are affixed with molecular appendages called ligands that attach exclusively to chemical receptors on cancerous cells. When irradiated with infrared light, the metal nanoparticles heat up, burning away the cancerous cells while leaving the surrounding healthy tissue unaffected. The properties of smaller nanoparticles might improve the accuracy and the effectiveness of such technologies, particularly since they can be more easily integrated into cells.

There is great promise for such small nanoparticles in catalysis, as well. The greater surface-area-to-volume ratios offered by atomic-scale nanoparticles could improve water-splitting and artificial photosynthesis, yielding clean and renewable energy sources from artificial fuels. Taking advantage of quantum plasmons in these metallic nanoparticles could significantly improve catalyic rates and efficiencies.

Aiding and abetting

The researchers' ability to observe plasmons in particles of such small size was abetted by the powerful, multi-million dollar environmental scanning transmission electron microscope (E-STEM) installed recently at Stanford's Center for Nanoscale Science and Engineering, one of just a handful of such microscopes in the world.

E-STEM imaging was used in conjunction with electron energy-loss spectroscopy (EELS) — a research technique that measures the change of an electron's energy as it passes through a material — to determine the shape and behavior of individual nanoparticles. Combined, STEM and EELS allowed the team to address many of the ambiguities of previous investigations.

"With the new microscope, we can resolve individual atoms within the nanoparticle," said Dionne, "and we can directly observe these particles' quantum plasmon resonances."

Ai Leen Koh, a research scientist at the Stanford Nanocharacterization Laboratory, and co-author of the paper, noted: "Even though plasmons can be probed using both light and electrons, electron excitation is advantageous in that it allows us to image the nanoparticle down to the atomic level and study its plasmon resonances at the same time."

Scholl added, "Someday, we might use the technique to watch reactions in progress to better understand and optimize them."

Elegant and versatile

The researchers concluded by explaining the physics of their discovery through an elegant and versatile analytical model based on well-known quantum mechanical principles.

"Technically speaking, we've created a relatively simple, computationally light model that describes plasmonic systems where classical theories have failed," said Scholl.

Their elegant and versatile model opens up numerous opportunities for scientific gain.

"This paper represents fundamental research. We have clarified what was an ambiguous scientific understanding and, for the first time, directly correlated a particle's geometry with its plasmonic resonance for quantum-sized particles," summarized Dionne. "And this could have some very interesting, and very promising, implications and applications."

This research was made possible by the National Science Foundation Graduate Research Fellowship Program, the Stanford Terman Fellowship and the Robert N. Noyce Family Faculty Fellowship.

This article was written by Andrew Myers is associate director of communications for the Stanford School of Engineering.

####

For more information, please click here

Contacts:
Andrew Myers

650-736-2245

Copyright © Stanford School of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Discoveries

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Energy

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

“Line dancing bacteria win the 2014 Dolomite and Lab on a Chip Video Competition” December 16th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Quantum nanoscience

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE