Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanotherapy: tiny tools hit brain tumors with big radiation: Health Science Center researchers prepare clinical trial that will use fat-enclosed nanoparticles to irradiate just the right spot

Abstract:
For the past 40 years, radiation has been the most effective method for treating deadly brain tumors called glioblastomas. But, although the targeting technology has been refined, beams of radiation still must pass through healthy brain tissue to reach the tumor, and patients can only tolerate small amounts before developing serious side effects.

Nanotherapy: tiny tools hit brain tumors with big radiation: Health Science Center researchers prepare clinical trial that will use fat-enclosed nanoparticles to irradiate just the right spot

San Antonio, TX | Posted on March 20th, 2012

A group of researchers at The University of Texas Health Science Center at San Antonio have developed a way to deliver nanoparticle radiation directly to the brain tumor and keep it there. The method doses the tumor itself with much higher levels of radiation 20 to 30 times the current dose of radiation therapy to patients but spares a much greater area of brain tissue.

The study, published today in the journal Neuro-Oncology, has been successful enough in laboratory experiments that they're preparing to start a clinical trial at the Cancer Therapy & Research Center, said Andrew Brenner, M.D., Ph.D., the study's corresponding author and a neuro-oncologist at the CTRC who will lead the clinical trial.

"We saw that we could deliver much higher doses of radiation in animal models," Dr. Brenner said. "We were able to give it safely and we were able to completely eradicate tumors."
The radiation comes in the form of an isotope called rhenium-186, which has a short half-life. Once placed inside the tumor, the rhenium emits radiation that only extends out a few millimeters.

But simply putting the rhenium into a brain tumor would not work well without a way to keep it there the tiny particles would be picked up by the bloodstream and carried away. That problem was solved by a team led by nuclear medicine physician William T. Phillips, M.D., and biochemist Beth A. Goins, Ph.D., in the Department of Radiology; and Ande Bao, Ph.D., a medical physicist and pharmaceutical chemist in the Department of Otolaryngology, all of the School of Medicine at the UT Health Science Center. They encapsulated the rhenium in miniscule fat molecules, or liposomes, about 100 nanometers across.

"The technology is unique," Dr. Brenner said. "Only we can load the liposomes to these very high radioactivity levels."

The doctors hope to launch the clinical trial by summer.

####

About University of Texas Health Science Center at San Antonio
The Cancer Therapy & Research Center (CTRC) at The University of Texas Health Science Center at San Antonio is one of the elite academic cancer centers in the country to be named a National Cancer Institute (NCI) Designated Cancer Center, and is one of only four in Texas. A leader in developing new drugs to treat cancer, the CTRC Institute for Drug Development (IDD) conducts one of the largest oncology Phase I clinical drug programs in the world, and participates in development of cancer drugs approved by the U.S. Food & Drug Administration. For more information, visit www.ctrc.net.

For more information, please click here

Contacts:
Elizabeth Allen

210-450-2020

Copyright © University of Texas Health Science Center at San Antonio

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Nanomedicine

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE