Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New technique to detect and manipulate nano-objects using plasmonic nano-cavities

OpticalTrapping: SIBA plasmonic trapping using a Fabry–Pérot nanopore cavity
OpticalTrapping: SIBA plasmonic trapping using a Fabry–Pérot nanopore cavity

Abstract:
Imec researchers have presented a new approach to detect and manipulate nano-objects. The technique makes use of plasmonic excitation in nanocavities. In a demonstration, a rectangular nanocavity was used to detect the presence of 22nm beads. This approach may open new routes to create optical tweezers at the nanoscale, for ultra-accurate sensing, trapping, and arranging of nanoscale objects, such as biomolecules (e.g. proteins or DNA).

New technique to detect and manipulate nano-objects using plasmonic nano-cavities

Leuven, Belgium | Posted on March 16th, 2012

Optical trapping techniques, the so called optical tweezers, are used to trap and manipulate objects. A highly focused laser beam provides an attractive or repulsive force to physically hold and move microscopic dielectric objects (down to micrometer-scale). But this technique cannot be applied straightforward to nanoscale objects. The energy required to manipulate such small objects is simply too large in relation to their size and would destroy the objects. Recently, researchers have therefore come up with the idea to make use of the strong local fields of metal nanostructures that are excited by light.

When metal nanostructures are illuminated with visible to near-infrared light, strong local electromagnetic fields are generated. These are caused by the collective oscillations of conduction electrons - called surface plasmons. These fields can be detected and visualized e.g. through surface-enhanced Raman spectroscopy. And because the presence of nanosized objects, such as biomulecules, causes changes in the fields, this phenomenon can be used as a sensor.

But the energy of the local fields could also be used to trap and manipulate the nanosized objects. In a recent publication, imec's researchers now present a new approach that uses this technique. They combine self-induced back action (SIBA) trapping with the latest advances in nanoscale plasmon engineering.

As a demonstration, the researchers designed a resonant trap in the form of a rectangular nanopore. This form of pore allows for tuning the plamons by changing the aspect ratio. This trap was successfully tested with 22nm polystyrene beads, distinguishing between events where one bead was trapped, or those where two beads were trapped at the same time. As part of their work, the researchers also proposed a figure of merit to quantify the efficiency of their trapping mechanism and to compare it to other optical nanotweezers.

####

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

This work was published in the January edition of Nano-letters:

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Sensors

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Graphene enables tunable microwave antenna May 15th, 2015

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Discoveries

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Tools

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

Alliances/Partnerships/Distributorships

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project