Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Diamond brightens the performance of electronic devices

While diamonds may be a girl’s best friend, they’re also well-loved by scientists working to enhance the performance of electronic devices. Two new studies performed at Argonne have revealed a new pathway for materials scientists to use previously unexplored properties of nanocrystalline-diamond thin films.
While diamonds may be a girl’s best friend, they’re also well-loved by scientists working to enhance the performance of electronic devices. Two new studies performed at Argonne have revealed a new pathway for materials scientists to use previously unexplored properties of nanocrystalline-diamond thin films.

Abstract:
While diamonds may be a girl's best friend, they're also well-loved by scientists working to enhance the performance of electronic devices.

Diamond brightens the performance of electronic devices

Argonne, IL | Posted on March 13th, 2012

Two new studies performed at the U.S. Department of Energy's Argonne National Laboratory have revealed a new pathway for materials scientists to use previously unexplored properties of nanocrystalline-diamond thin films. While the properties of diamond thin films are relatively well-understood, the new discovery could dramatically improve the performance of certain types of integrated circuits by reducing their "thermal budget."

For decades, engineers have sought to build more efficient electronic devices by reducing the size of their components. In the process of doing so, however, researchers have reached a "thermal bottleneck," said Argonne nanoscientist Anirudha Sumant.

In a thermal bottleneck, the excess heat generated in the device causes undesirable effects that affect its performance. "Unless we come-up with innovative ways to suck the heat off of our electronics, we are pretty much stuck with this bottleneck," Sumant explained.

The unusually attractive thermal properties of diamond thin films have led scientists to suggest using this material as a heat sink that could be integrated with a number of different semiconducting materials. However, the deposition temperatures for the diamond films typically exceed 800 degrees Celsius—roughly 1500 degrees Fahrenheit, which limits the feasibility of this approach.

"The name of the game is to produce diamond films at the lowest possible temperature. If I can grow the films at 400 degrees, it makes it possible for me to integrate this material with a whole range of other semiconductor materials," Sumant said.

By using a new technique that altered the deposition process of the diamond films, Sumant and his colleagues at Argonne's Center for Nanoscale Materials were able to both reduce the temperature to close to 400 degrees Celsius and to tune the thermal properties of the diamond films by controlling their grain size. This permitted the eventual combination of the diamond with two other important materials: graphene and gallium nitride.

According to Sumant, diamond has much better heat conduction properties than silicon or silicon oxide, which were traditionally used for fabrication of graphene devices. As a result of better heat removal, graphene devices fabricated on diamond can sustain much higher current densities.

In the other study, Sumant used the same technology to combine diamond thin films with gallium nitride, which is used extensively in high-power light emitting devices (LED). After depositing a 300 nm-thick diamond film on a gallium nitride substrate, Sumant and his colleagues noticed a considerable improvement in the thermal performance. Because a difference within an integrated circuit of just a few degrees can cause a noticeable change in performance, he called this result "remarkable."

"The common link between these experiments is that we're finding new ways of dissipating heat more effectively while using less energy, which is the key," Sumant said. "These processes are crucial for industry as they look for ways to overcome conventional limits on semiconducting circuits and pursue the next generation of electronics."

The results of the two studies were reported in Nano Letters and Advanced Functional Materials. Both of these studies were carried out in collaboration with Prof. Alexander Balandin at the University of California-Riverside and his graduate students Jie Yu, Guanxiong Liu and Dr. Vivek Goyal, a recent Ph.D. graduate.

Funding for the research conducted at the Center for Nanoscale Materials was provided by the Basic Energy Sciences program of the U.S. Department of Energy's Office of Science.

The Center for Nanoscale Materials at Argonne National Laboratories is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

By Jared Sagoff

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Jared Sagoff
630/252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The papers can be found online at:

and here:

Related News Press

News and information

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

Thin films

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

Carbon in color: First-ever colored thin films of nanotubes created: A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow; the secret is a fine-tuned fabrication process -- and a s August 29th, 2018

Stress-free ALD from Picosun August 28th, 2018

Laboratories

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Chip Technology

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Discoveries

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Research partnerships

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project