Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A spongy nanomaterial may change the way to monitor water quality

Abstract:
A group of French researchers has developed a nanomaterial that works like a sponge for some water pollutants and allows to measure them easily and quickly.

A spongy nanomaterial may change the way to monitor water quality

Brussels, Belgium | Posted on March 9th, 2012

Heavy metals coming from industrial waste, such as mercury, lead, cadmium, nickel, and zinc are some of the most dreaded pollutants in water, and EU laws strictly limits their concentration in the water we drink. Measuring these pollutants is commonplace but cumbersome. A sample of water has to be collected and taken to a laboratory for analysis, and results typically require days or weeks.

A group of researchers from the Ecole Polytechnique in Palaiseau, near Paris, have developed a tiny film that could speed up the process dramatically. The "nano-factor" is within the film itself: millions of nanopores that trap metals like a sponge, making them immediately available for analysis. Their new system is portable, provides immediate results, and therefore may change the way we monitor water quality.

François Plais is an engineer with industry experience at the Ecole Polytechnique and a member of the team that developed the sensor.

How does your system work?

At the beginning we were developing a membrane to filter water, not to analyse it. Then we realized that we could change the structure of the membrane to work as a trap for metal ions. The two ideas are similar and opposite: a filtering membrane is a tiny sheet of polycarbonate with holes of a diameter of 30-40 nanometers, called nanopores, that let the water flow and filter out impurities. Our sensor membrane, instead, is made with another polymer called PVDF, and with nanopores that trap water and any metal ions that come with it. Basically, it works like a sponge. The system also works as a sensor, because metals ions change the electrical properties of the membrane. If we apply two electrodes at the membrane, we can measure the concentration of metals with a standard electrochemical test, which is relatively straightforward.

What are the advantages compared to the existing technologies?

With our system you don't need to bring a sample to the laboratory, because you use it on site. At the same time, our data show that the sensitivity and accuracy are comparable to the current laboratory standards.

Can you mention some possible applications ?

Our system may be ideal to assess the quality of drinking water from lakes, reservoirs or rivers, for example, or to monitor pollution from industrial waste. By providing immediate results, it could really change the way we monitor water quality, as far as heavy metals are concerned.

What are you going to do next?

We still need to validate our laboratory results in a real-world setting. With the help of Pronano, we have found a partner that will allow us to do that, and we are now working on this new phase of the project.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Sensors

The next generation of carbon monoxide nanosensors May 26th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Making organs transparent to improve nanomedicine (video) May 13th, 2016

Discoveries

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Announcements

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Environment

The next generation of carbon monoxide nanosensors May 26th, 2016

Novel functionalized nanomaterials for CO2 capture May 10th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Los Alamos National Laboratory Expands Scope to Locus Technologies SaaS Contract: Los Alamos National Laboratory Adds Two New Applications to Locus SaaS Platform May 7th, 2016

Water

Mille-feuille-filter removes viruses from water May 19th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Understanding tiny droplets can make for better weather forecasts: Climate change models also benefit from understanding fundamental thermodynamics of water droplets May 6th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic