Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A spongy nanomaterial may change the way to monitor water quality

Abstract:
A group of French researchers has developed a nanomaterial that works like a sponge for some water pollutants and allows to measure them easily and quickly.

A spongy nanomaterial may change the way to monitor water quality

Brussels, Belgium | Posted on March 9th, 2012

Heavy metals coming from industrial waste, such as mercury, lead, cadmium, nickel, and zinc are some of the most dreaded pollutants in water, and EU laws strictly limits their concentration in the water we drink. Measuring these pollutants is commonplace but cumbersome. A sample of water has to be collected and taken to a laboratory for analysis, and results typically require days or weeks.

A group of researchers from the Ecole Polytechnique in Palaiseau, near Paris, have developed a tiny film that could speed up the process dramatically. The "nano-factor" is within the film itself: millions of nanopores that trap metals like a sponge, making them immediately available for analysis. Their new system is portable, provides immediate results, and therefore may change the way we monitor water quality.

François Plais is an engineer with industry experience at the Ecole Polytechnique and a member of the team that developed the sensor.

How does your system work?

At the beginning we were developing a membrane to filter water, not to analyse it. Then we realized that we could change the structure of the membrane to work as a trap for metal ions. The two ideas are similar and opposite: a filtering membrane is a tiny sheet of polycarbonate with holes of a diameter of 30-40 nanometers, called nanopores, that let the water flow and filter out impurities. Our sensor membrane, instead, is made with another polymer called PVDF, and with nanopores that trap water and any metal ions that come with it. Basically, it works like a sponge. The system also works as a sensor, because metals ions change the electrical properties of the membrane. If we apply two electrodes at the membrane, we can measure the concentration of metals with a standard electrochemical test, which is relatively straightforward.

What are the advantages compared to the existing technologies?

With our system you don't need to bring a sample to the laboratory, because you use it on site. At the same time, our data show that the sensitivity and accuracy are comparable to the current laboratory standards.

Can you mention some possible applications ?

Our system may be ideal to assess the quality of drinking water from lakes, reservoirs or rivers, for example, or to monitor pollution from industrial waste. By providing immediate results, it could really change the way we monitor water quality, as far as heavy metals are concerned.

What are you going to do next?

We still need to validate our laboratory results in a real-world setting. With the help of Pronano, we have found a partner that will allow us to do that, and we are now working on this new phase of the project.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Sensors

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Environment

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Water

Nano-level lubricant tuning improves material for electronic devices and surface coatings February 11th, 2017

Tough aqua material for water purification: Decontamination of water with a robust and sustainable membrane assembled from 2 synergistically working components January 24th, 2017

Scientists have discovered a new state of matter for water January 2nd, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project