Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A spongy nanomaterial may change the way to monitor water quality

Abstract:
A group of French researchers has developed a nanomaterial that works like a sponge for some water pollutants and allows to measure them easily and quickly.

A spongy nanomaterial may change the way to monitor water quality

Brussels, Belgium | Posted on March 9th, 2012

Heavy metals coming from industrial waste, such as mercury, lead, cadmium, nickel, and zinc are some of the most dreaded pollutants in water, and EU laws strictly limits their concentration in the water we drink. Measuring these pollutants is commonplace but cumbersome. A sample of water has to be collected and taken to a laboratory for analysis, and results typically require days or weeks.

A group of researchers from the Ecole Polytechnique in Palaiseau, near Paris, have developed a tiny film that could speed up the process dramatically. The "nano-factor" is within the film itself: millions of nanopores that trap metals like a sponge, making them immediately available for analysis. Their new system is portable, provides immediate results, and therefore may change the way we monitor water quality.

François Plais is an engineer with industry experience at the Ecole Polytechnique and a member of the team that developed the sensor.

How does your system work?

At the beginning we were developing a membrane to filter water, not to analyse it. Then we realized that we could change the structure of the membrane to work as a trap for metal ions. The two ideas are similar and opposite: a filtering membrane is a tiny sheet of polycarbonate with holes of a diameter of 30-40 nanometers, called nanopores, that let the water flow and filter out impurities. Our sensor membrane, instead, is made with another polymer called PVDF, and with nanopores that trap water and any metal ions that come with it. Basically, it works like a sponge. The system also works as a sensor, because metals ions change the electrical properties of the membrane. If we apply two electrodes at the membrane, we can measure the concentration of metals with a standard electrochemical test, which is relatively straightforward.

What are the advantages compared to the existing technologies?

With our system you don't need to bring a sample to the laboratory, because you use it on site. At the same time, our data show that the sensitivity and accuracy are comparable to the current laboratory standards.

Can you mention some possible applications ?

Our system may be ideal to assess the quality of drinking water from lakes, reservoirs or rivers, for example, or to monitor pollution from industrial waste. By providing immediate results, it could really change the way we monitor water quality, as far as heavy metals are concerned.

What are you going to do next?

We still need to validate our laboratory results in a real-world setting. With the help of Pronano, we have found a partner that will allow us to do that, and we are now working on this new phase of the project.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Discoveries

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Environment

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Water

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Water, water -- the two types of liquid water: Understanding water's behavior could help with Alzheimer's research November 11th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project