Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 2 crystals linked by quantum physics: Researchers at the UNIGE have succeeded in entangling 2 macroscopic crystals, a step towards the development of quantum memory

Abstract:
For almost fifteen years Professor Nicolas Gisin and his physicist col- laborators have been entangling photons. If this exercise seems to them perhaps henceforth trivial, it continues to elude us ordinary humans. The laws that govern the quantum world are so strange that they completely escape us human beings confronted with the laws of the macroscopic world. This apparent difference in nature between the infinitesimally small and our world poses the question of what link exists between the two.

2 crystals linked by quantum physics: Researchers at the UNIGE have succeeded in entangling 2 macroscopic crystals, a step towards the development of quantum memory

Switzerland | Posted on March 5th, 2012

However these two worlds do interact. To realise this, one must fol- low the latest experiment of the Group of Applied Physics (GAP). Nico- las Gisin, researcher Mikael Afzelius and their team have actually pro- duced the entanglement of two macroscopic crystals, visible to the naked eye, thanks to a quantum particle, a photon, otherwise known as a particle of light.

To achieve this exploit, the physicists developed a complex device to which they hold the key. After a first system that allows them to verify that they've actually managed to release one, and only one, photon, a condition essential to the success of the experiment, a second de- vice "slices" this particle in two. This splitting allows the researchers to obtain two entangled photon halves. In other words, even though they are not in the same location, the two halves continue to behave as if they were one.

Wait for the photons to exit

The two halves are then each sent through a separate crystal where they will interact with the neodymium atoms present in its atomic structure. At that moment, because they are excited by these entan- gled photons, the neodymium lattices in each crystal likewise become entangled. But how can we be certain that they've actually reacted to the two photon halves?

That's simple ... or nearly! They just have to wait for the two particles to exit the crystals - since they exit after a rather brief period of about 33 nanoseconds - and to verify that it really is the entangled pair. "That's exactly what we found since the two photons that we cap- tured exiting the crystals showed all the properties of two quantum particles behaving as one, characterised by their simultaneity in spite of their separation", Félix Bussières rejoices, one of the authors of the article.

In addition to its fundamental aspect, this experiment carries with it potential applications. Actually, for the specialists in quantum entan- glement, this phenomenon has the unpleasant habit of fading when the two entangled quantum objects are too far from one another. This is problematic when one envisions impregnable quantum cryp- tography networks which could link two distant speakers separated by several hundreds or even thousands of kilometres.

"Thanks to the entanglement of crystals, we can now imagine inven- ting quantum repeaters", Nicolas Gisin explains, "in other words, the sorts of terminals that would allow us to relay entanglement over large distances. We could then also create memory for quantum com- puters."

Entanglement still has many surprises in store for us.

####

For more information, please click here

Contacts:
Nicolas Gisin

41-223-790-502

Copyright © Université de Genève

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Quantum Computing

Harris & Harris Group Issues Its Financial Statements as of December 31, 2016, Posts Its Annual Shareholder Letter, And Will Host a Conference Call for Shareholders on Friday, March 17, 2017 March 15th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

First ever blueprint unveiled to construct a large scale quantum computer February 3rd, 2017

Chiral quantum optics: A new research field with bright perspectives January 31st, 2017

Discoveries

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Announcements

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Photonics/Optics/Lasers

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

MIPT physicists predict the existence of unusual optical composites March 10th, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project