Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 2 crystals linked by quantum physics: Researchers at the UNIGE have succeeded in entangling 2 macroscopic crystals, a step towards the development of quantum memory

Abstract:
For almost fifteen years Professor Nicolas Gisin and his physicist col- laborators have been entangling photons. If this exercise seems to them perhaps henceforth trivial, it continues to elude us ordinary humans. The laws that govern the quantum world are so strange that they completely escape us human beings confronted with the laws of the macroscopic world. This apparent difference in nature between the infinitesimally small and our world poses the question of what link exists between the two.

2 crystals linked by quantum physics: Researchers at the UNIGE have succeeded in entangling 2 macroscopic crystals, a step towards the development of quantum memory

Switzerland | Posted on March 5th, 2012

However these two worlds do interact. To realise this, one must fol- low the latest experiment of the Group of Applied Physics (GAP). Nico- las Gisin, researcher Mikael Afzelius and their team have actually pro- duced the entanglement of two macroscopic crystals, visible to the naked eye, thanks to a quantum particle, a photon, otherwise known as a particle of light.

To achieve this exploit, the physicists developed a complex device to which they hold the key. After a first system that allows them to verify that they've actually managed to release one, and only one, photon, a condition essential to the success of the experiment, a second de- vice "slices" this particle in two. This splitting allows the researchers to obtain two entangled photon halves. In other words, even though they are not in the same location, the two halves continue to behave as if they were one.

Wait for the photons to exit

The two halves are then each sent through a separate crystal where they will interact with the neodymium atoms present in its atomic structure. At that moment, because they are excited by these entan- gled photons, the neodymium lattices in each crystal likewise become entangled. But how can we be certain that they've actually reacted to the two photon halves?

That's simple ... or nearly! They just have to wait for the two particles to exit the crystals - since they exit after a rather brief period of about 33 nanoseconds - and to verify that it really is the entangled pair. "That's exactly what we found since the two photons that we cap- tured exiting the crystals showed all the properties of two quantum particles behaving as one, characterised by their simultaneity in spite of their separation", Félix Bussières rejoices, one of the authors of the article.

In addition to its fundamental aspect, this experiment carries with it potential applications. Actually, for the specialists in quantum entan- glement, this phenomenon has the unpleasant habit of fading when the two entangled quantum objects are too far from one another. This is problematic when one envisions impregnable quantum cryp- tography networks which could link two distant speakers separated by several hundreds or even thousands of kilometres.

"Thanks to the entanglement of crystals, we can now imagine inven- ting quantum repeaters", Nicolas Gisin explains, "in other words, the sorts of terminals that would allow us to relay entanglement over large distances. We could then also create memory for quantum com- puters."

Entanglement still has many surprises in store for us.

####

For more information, please click here

Contacts:
Nicolas Gisin

41-223-790-502

Copyright © Université de Genève

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Quantum Computing

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits August 9th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Record-breaking logic gate 'another important milestone' on road to quantum computers August 7th, 2016

Discoveries

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Announcements

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Photonics/Optics/Lasers

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

Quantum nanoscience

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits August 9th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Scientists discover light could exist in a previously unknown form August 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic