Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UK scientists develop optimum piezoelectric energy harvesters: Research will lead to better more efficient harvesting devices

Abstract:
Scientists working as part of the Metrology for Energy Harvesting Project have developed a new model to deliver the maximum power output for piezoelectric energy harvesters.

UK scientists develop optimum piezoelectric energy harvesters: Research will lead to better more efficient harvesting devices

UK | Posted on March 2nd, 2012

Piezoelectric materials convert electrical energy into a strain (or vice-versa). The best known use of piezoelectricity is for medical ultrasound.

Piezoelectric energy harvesters utilise energy from unwanted mechanical vibrations, such as the rattling of an air conditioning duct or the movement of a bridge with passing traffic. Power levels are small, usually a few milli-watts or less, but the scavenged energy could be used to power autonomous devices such as wireless sensors.

Piezoelectric energy harvesters are typically vibrating cantilevers, covered with a piezoelectric layer that converts mechanical strain to an electrical charge to power devices. Most developers cover the entire length of the cantilever with piezoelectric material in an attempt to maximise the conversion efficiency.

However, scientists based at the UK's at National Physical Laboratory, one of seven national measurement institutes involved in the European Metrology Research Programme funded project have discovered that this approach is counterproductive. Their research shows that due to the charge redistribution across the cantilever there is an internal loss of power of up to 25% of potential output. To counter this the team has developed a model to show that more energy can be converted if the beam is only covered with piezoelectric for two thirds of its length.

Current piezoelectric energy harvesting devices are used in applications such as wireless and battery-less light switches, and sensors. However, their potential applications range from the predictive maintenance of any moving or rotating machine parts, to electronic devices that harvest their own wasted operational energy to be more energy efficient.

Harvesting energy that would otherwise be wasted is key to meeting future energy demands while reducing carbon emissions. This energy can come from light, heat, movement or vibrations.

Markys Cain, Knowledge Leader at NPL, said:

"The energy harvesting market was worth $605 million in 2010 but is predicted to reach $4.4 billion by the end of this decade. For the market to reach its true potential we need to develop the products that can guarantee a greater energy yield and drive industrial adoption of energy harvesting products. The work undertaken by the Functional Materials Group at NPL will do exactly that, providing a model for more efficient piezoelectric energy harvesting methods."

The research was originally published in Applied Physics Letters 100, 073901 (2012).

####

For more information, please click here

Contacts:
Joe Meaney

44-787-546-9309

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Physics

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Sensors

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Is this the 'holey' grail of batteries? May 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project