Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UK scientists develop optimum piezoelectric energy harvesters: Research will lead to better more efficient harvesting devices

Abstract:
Scientists working as part of the Metrology for Energy Harvesting Project have developed a new model to deliver the maximum power output for piezoelectric energy harvesters.

UK scientists develop optimum piezoelectric energy harvesters: Research will lead to better more efficient harvesting devices

UK | Posted on March 2nd, 2012

Piezoelectric materials convert electrical energy into a strain (or vice-versa). The best known use of piezoelectricity is for medical ultrasound.

Piezoelectric energy harvesters utilise energy from unwanted mechanical vibrations, such as the rattling of an air conditioning duct or the movement of a bridge with passing traffic. Power levels are small, usually a few milli-watts or less, but the scavenged energy could be used to power autonomous devices such as wireless sensors.

Piezoelectric energy harvesters are typically vibrating cantilevers, covered with a piezoelectric layer that converts mechanical strain to an electrical charge to power devices. Most developers cover the entire length of the cantilever with piezoelectric material in an attempt to maximise the conversion efficiency.

However, scientists based at the UK's at National Physical Laboratory, one of seven national measurement institutes involved in the European Metrology Research Programme funded project have discovered that this approach is counterproductive. Their research shows that due to the charge redistribution across the cantilever there is an internal loss of power of up to 25% of potential output. To counter this the team has developed a model to show that more energy can be converted if the beam is only covered with piezoelectric for two thirds of its length.

Current piezoelectric energy harvesting devices are used in applications such as wireless and battery-less light switches, and sensors. However, their potential applications range from the predictive maintenance of any moving or rotating machine parts, to electronic devices that harvest their own wasted operational energy to be more energy efficient.

Harvesting energy that would otherwise be wasted is key to meeting future energy demands while reducing carbon emissions. This energy can come from light, heat, movement or vibrations.

Markys Cain, Knowledge Leader at NPL, said:

"The energy harvesting market was worth $605 million in 2010 but is predicted to reach $4.4 billion by the end of this decade. For the market to reach its true potential we need to develop the products that can guarantee a greater energy yield and drive industrial adoption of energy harvesting products. The work undertaken by the Functional Materials Group at NPL will do exactly that, providing a model for more efficient piezoelectric energy harvesting methods."

The research was originally published in Applied Physics Letters 100, 073901 (2012).

####

For more information, please click here

Contacts:
Joe Meaney

44-787-546-9309

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Tongfang Global and QD Vision Partner to Bring Wide Color Gamut to Global Television Lines: Color IQTM quantum dots help boost company’s focus on superior color reproduction September 3rd, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Physics

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Sensors

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Setting ground rules for nanotechnology research: Two new projects set the stage for nanotechnology research to move into Big Data August 18th, 2015

Discoveries

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Announcements

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

'Diamonds from the sky' approach turns CO2 into valuable products August 19th, 2015

Drexel engineers 'sandwich' atomic layers to make new materials for energy storage August 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic