Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UK scientists develop optimum piezoelectric energy harvesters: Research will lead to better more efficient harvesting devices

Abstract:
Scientists working as part of the Metrology for Energy Harvesting Project have developed a new model to deliver the maximum power output for piezoelectric energy harvesters.

UK scientists develop optimum piezoelectric energy harvesters: Research will lead to better more efficient harvesting devices

UK | Posted on March 2nd, 2012

Piezoelectric materials convert electrical energy into a strain (or vice-versa). The best known use of piezoelectricity is for medical ultrasound.

Piezoelectric energy harvesters utilise energy from unwanted mechanical vibrations, such as the rattling of an air conditioning duct or the movement of a bridge with passing traffic. Power levels are small, usually a few milli-watts or less, but the scavenged energy could be used to power autonomous devices such as wireless sensors.

Piezoelectric energy harvesters are typically vibrating cantilevers, covered with a piezoelectric layer that converts mechanical strain to an electrical charge to power devices. Most developers cover the entire length of the cantilever with piezoelectric material in an attempt to maximise the conversion efficiency.

However, scientists based at the UK's at National Physical Laboratory, one of seven national measurement institutes involved in the European Metrology Research Programme funded project have discovered that this approach is counterproductive. Their research shows that due to the charge redistribution across the cantilever there is an internal loss of power of up to 25% of potential output. To counter this the team has developed a model to show that more energy can be converted if the beam is only covered with piezoelectric for two thirds of its length.

Current piezoelectric energy harvesting devices are used in applications such as wireless and battery-less light switches, and sensors. However, their potential applications range from the predictive maintenance of any moving or rotating machine parts, to electronic devices that harvest their own wasted operational energy to be more energy efficient.

Harvesting energy that would otherwise be wasted is key to meeting future energy demands while reducing carbon emissions. This energy can come from light, heat, movement or vibrations.

Markys Cain, Knowledge Leader at NPL, said:

"The energy harvesting market was worth $605 million in 2010 but is predicted to reach $4.4 billion by the end of this decade. For the market to reach its true potential we need to develop the products that can guarantee a greater energy yield and drive industrial adoption of energy harvesting products. The work undertaken by the Functional Materials Group at NPL will do exactly that, providing a model for more efficient piezoelectric energy harvesting methods."

The research was originally published in Applied Physics Letters 100, 073901 (2012).

####

For more information, please click here

Contacts:
Joe Meaney

44-787-546-9309

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Physics

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

The shape of melting in two dimensions: University of Michigan team uses Titan to explore fundamental phase transitions February 2nd, 2017

Sensors

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Researchers optimize the assembly of micro-/meso-/macroporous carbon for Li-S batteries February 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project