Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UK scientists develop optimum piezoelectric energy harvesters: Research will lead to better more efficient harvesting devices

Abstract:
Scientists working as part of the Metrology for Energy Harvesting Project have developed a new model to deliver the maximum power output for piezoelectric energy harvesters.

UK scientists develop optimum piezoelectric energy harvesters: Research will lead to better more efficient harvesting devices

UK | Posted on March 2nd, 2012

Piezoelectric materials convert electrical energy into a strain (or vice-versa). The best known use of piezoelectricity is for medical ultrasound.

Piezoelectric energy harvesters utilise energy from unwanted mechanical vibrations, such as the rattling of an air conditioning duct or the movement of a bridge with passing traffic. Power levels are small, usually a few milli-watts or less, but the scavenged energy could be used to power autonomous devices such as wireless sensors.

Piezoelectric energy harvesters are typically vibrating cantilevers, covered with a piezoelectric layer that converts mechanical strain to an electrical charge to power devices. Most developers cover the entire length of the cantilever with piezoelectric material in an attempt to maximise the conversion efficiency.

However, scientists based at the UK's at National Physical Laboratory, one of seven national measurement institutes involved in the European Metrology Research Programme funded project have discovered that this approach is counterproductive. Their research shows that due to the charge redistribution across the cantilever there is an internal loss of power of up to 25% of potential output. To counter this the team has developed a model to show that more energy can be converted if the beam is only covered with piezoelectric for two thirds of its length.

Current piezoelectric energy harvesting devices are used in applications such as wireless and battery-less light switches, and sensors. However, their potential applications range from the predictive maintenance of any moving or rotating machine parts, to electronic devices that harvest their own wasted operational energy to be more energy efficient.

Harvesting energy that would otherwise be wasted is key to meeting future energy demands while reducing carbon emissions. This energy can come from light, heat, movement or vibrations.

Markys Cain, Knowledge Leader at NPL, said:

"The energy harvesting market was worth $605 million in 2010 but is predicted to reach $4.4 billion by the end of this decade. For the market to reach its true potential we need to develop the products that can guarantee a greater energy yield and drive industrial adoption of energy harvesting products. The work undertaken by the Functional Materials Group at NPL will do exactly that, providing a model for more efficient piezoelectric energy harvesting methods."

The research was originally published in Applied Physics Letters 100, 073901 (2012).

####

For more information, please click here

Contacts:
Joe Meaney

44-787-546-9309

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Physics

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Nano-pea pod model widens electronics applications: A new theoretical model explains how a nanostructure, such as the nano-pea pod, can exhibit localised electrons September 4th, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

Sensors

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Nanoscience makes your wine better September 17th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Discoveries

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Announcements

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries September 12th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Development of Algorithm for Accurate Calculation of Average Distance Travelled by Low-Speed Electrons without Energy Loss that Are Sensitive to Surface Structure September 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE