Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles in food, vitamins could harm human health

An intestinal cell monolayer after exposure to nanoparticles, shown in green.
An intestinal cell monolayer after exposure to nanoparticles, shown in green.

Abstract:
Billions of engineered nanoparticles in foods and pharmaceuticals are ingested by humans daily, and new Cornell research warns they may be more harmful to health than previously thought.

Nanoparticles in food, vitamins could harm human health

Ithaca, NY | Posted on February 16th, 2012

A research collaboration led by Michael Shuler, the Samuel B. Eckert Professor of Chemical Engineering and the James and Marsha McCormick Chair of Biomedical Engineering, studied how large doses of polystyrene nanoparticles -- a common, FDA-approved material found in substances from food additives to vitamins -- affected how well chickens absorbed iron, an essential nutrient, into their cells.

The results were reported online Feb. 12 in the journal Nature Nanotechnology.

According to the study, high-intensity, short-term exposure to the particles initially blocked iron absorption, whereas longer-term exposure caused intestinal cell structures to change, allowing for a compensating uptick in iron absorption.

The researchers tested both acute and chronic nanoparticle exposure using human gut cells in petri dishes as well as live chickens and reported matching results. They chose chickens because these animals absorb iron into their bodies similarly to humans, and they are also similarly sensitive to micronutrient deficiencies, explained Gretchen Mahler, Ph.D. '08, the paper's first author and former Cornell graduate student and postdoctoral associate.

The researchers used commercially available, 50-nanometer polystyrene carboxylated particles that are generally considered safe for human consumption. They found that following acute exposure, a few minutes to a few hours after consumption, both the absorption of iron in the in vitro cells and the chickens decreased.

But following exposure of 2 milligrams per kilogram for two weeks -- a slower, more chronic intake -- the structure of the intestinal villi began to change and increase in surface area. This was an effective physiological remodeling that led to increased iron absorption.

"This was a physiological response that was unexpected," Mahler said.

Shuler noted that in some sense this intestinal villi remodeling was positive because it shows the body adapts to challenges. But it serves to underscore how such particles, which have been widely studied and considered safe, cause barely detectable changes that could lead to, for example, over-absorption of other, harmful compounds.

Human exposure to nanoparticles is only increasing, Shuler continued.

"Nanoparticles are entering our environment in many different ways," Shuler said. "We have some assurance that at a gross level they are not harmful, but there may be more subtle effects that we need to worry about."

The paper included Cornell co-authors Mandy Esch, a research associate in biomedical engineering; Elad Tako, a research associate at the Robert W. Holley Center for Agriculture and Health; Teresa Southard, assistant professor of biomedical sciences; Shivaun Archer, senior lecturer in biomedical engineering; and Raymond Glahn, senior scientist with the USDA Agricultural Research Service and courtesy associate professor in the Department of Food Science. The work was supported by the National Science Foundation; New York State Office of Science, Technology and Academic Research; Army Corp of Engineers; and U.S. Department of Agriculture.

####

For more information, please click here

Contacts:
Chronicle Online
312 College Ave.
Ithaca, NY 14850
607.255.4206


Anne Ju


John Carberry
(607) 255-5353

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Let the europium shine brighter January 21st, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Announcements

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Food/Agriculture/Supplements

How slippery surfaces allow sticky pastes and gels to slide: Engineered surface treatment developed at MIT can reduce waste and improve efficiency in many processes April 23rd, 2019

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

A Deep tech startup is disrupting dairy industry in Chennai Demo Day at IIT-Madras Research Park February 20th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Safety-Nanoparticles/Risk management

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

Plastic waste disintegrates into nanoparticles, study finds December 28th, 2018

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project