Home > Press > Dust from industrial-scale processing of nanomaterials carries high explosion risk
Abstract:
With expanded industrial-scale production of nanomaterials fast approaching, scientists are reporting indications that dust generated during processing of nanomaterials may explode more easily than dust from wheat flour, cornstarch and most other common dust explosion hazards. Their article in ACS' journal Industrial & Engineering Chemistry Research indicates that nanomaterial dust could explode due to a spark with only 1/30th the energy needed to ignite sugar dust — the cause of the 2008 Portwentworth, Georgia, explosion that killed 13 people, injured 42 people and destroyed a factory.
Paul Amyotte and colleagues explain that dust explosions are among the earliest recorded causes of industrial accidents — dating back to a 1785 flour warehouse disaster — and are still a constant threat at facilities that process fine particles of various materials. Despite significant research, there is still much for scientists to learn about the risks of dust explosions in industry, especially of so-called "nontraditional" dusts (such as those made of nanomaterials), and a constant threat exists. That's why the researchers decided to probe the explosibility of three types of nontraditional dusts: nanomaterials; flocculent (fibrous or fuzzy) materials used in various products, such as floor coverings; and hybrid mixtures of a dust and a flammable gas or vapor.
After reviewing results of studies that exist on the topic, the researchers concluded that the energy needed to ignite nanomaterials made of metals, such as aluminum, is less than 1 mJ, which is less than 1/30th the energy required to ignite sugar dust or less than 1/60th the energy required to set wheat dust aflame. Flocking is often made with a process that generates static electricity, which could set off an explosion of flocculent dust, they point out. And the addition of a flammable gas or vapor to a dust as a hybrid mixture increases the chance that the dust will explode. The researchers warn that precautions should be taken to prevent these materials from exposure to sparks, collisions or friction, which could fuel an explosion.
The authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada.
####
About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 164,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
For more information, please click here
Contacts:
Michael Bernstein
202-872-6042
Copyright © American Chemical Society
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Chemistry
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||