Home > Press > Iranian Scientist Finds New Way to Generate Power
Abstract:
An Iranian scientist and his colleagues managed to discover a new way for the generation of power by using nanotechnology.
Iranian Associate Professor Kourosh Kalantarzadeh discovered a new power source.
The breakthrough was made jointly with other researchers at the Massachusetts Institute of Technology (MIT) and RMIT University in energy storage and power generation.
The power generated relative to the energy source size is three to four times greater than what is currently possible with the best lithium-ion batteries.
The team was working on measuring the acceleration of a chemical reaction along a nanotube when they discovered that the reaction generated power.
Now the two researchers are using their combined expertise in chemistry and nanomaterials to explore this phenomenon.
Their work titled Nanodynamite: Fuel-coated nanotubes could provide bursts of power to the smallest systems is in the December IEEE Spectrum Magazine, the publication of the IEEE.
Associate Professor Kalantarzadeh said that his experimental system, based on one of the materials that have come from nanotechnology - carbon nanotubes - generates power, something researchers had not seen before.
"By coating a nanotube in nitrocellulose fuel and igniting one end, we set off a combustion wave along it and learned that a nanotube is an excellent conductor of heat from burning fuel. Even better, the combustion wave creates a strong electric current," he said.
"Our discovery that a thermopower wave works best across these tubes because of their dual conductivity turns conventional thermoelectricity on its head.
"It's the first viable nanoscale approach to power generation that exploits the thermoelectric effect by overcoming the feasibility issues associated with minimizing dimensions.
"But there are multiple angles to explore when it comes to taming these exotic waves and, ultimately, finding out if they're the wave of the future."
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Possible Futures
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||