Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Here comes the sun… Scientists have developed a new kind of solar cell which could capture significantly more of the energy from the sun than current cells

Abstract:
New solar cells could increase the maximum efficiency of solar panels by over 25%, according to scientists from the University of Cambridge.

Scientists from the Cavendish Laboratory, the University's Department of Physics, have developed a novel type of solar cell which could harvest energy from the sun much more efficiently than traditional designs. The research, published today in the journal Nano Letters, could dramatically improve the amount of useful energy created by solar panels.

Here comes the sun… Scientists have developed a new kind of solar cell which could capture significantly more of the energy from the sun than current cells

Cambridge, UK | Posted on February 8th, 2012

Solar panels work by absorbing energy from particles of light, called photons, which then generate electrons to create electricity. Traditional solar cells are only capable of capturing part of the light from the sun and much of the energy of the absorbed light, particularly of the blue photons, is lost as heat. This inability to extract the full energy of all of the different colours of light at once means that traditional solar cells are incapable of converting more than 34% of the available sunlight into electrical power.

The Cambridge team led by Professor Neil Greenham and Professor Sir Richard Friend has developed a hybrid cell which absorbs red light and harnesses the extra energy of blue light to boost the electrical current. Typically, a solar cell generates a single electron for each photon captured. However, by adding pentacene, an organic semiconductor, the solar cells can generate two electrons for every photon from the blue light spectrum. This could enable the cells to capture 44% of the incoming solar energy.

Bruno Ehrler, the lead author on the paper, said: "Organic and hybrid solar cells have an advantage over current silicon-based technology because they can be produced in large quantities at low cost by roll-to-roll printing. However, much of the cost of a solar power plant is in the land, labour, and installation hardware. As a result, even if organic solar panels are less expensive, we need to improve their efficiency to make them competitive. Otherwise, it'd be like buying a cheap painting, only to find out you need an expensive frame."

Mark Wilson, another author on the paper, said: "I think it's very important that we move towards sustainable sources of energy, and it's exciting to help explore possible solutions."

Dr. Akshay Rao, co-author on the paper noted: "This is just the first step towards a new generation of solar cells and we are very excited to be a part of this effort."

The research was funded by the Engineering and Physical Sciences Research Council (EPSRC).

1. The paper 'Singlet Exciton Fission-Sensitized Infrared Quantum Dot Solar Cells' will be published in the 08 February 2012 edition of Nano Letters.

2. The Engineering and Physical Sciences Research Council (EPSRC) is the UK's main agency for funding research in engineering and physical sciences. EPSRC invests around £800m a year in research and postgraduate training, to help the nation handle the next generation of technological change.

The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone's health, lifestyle and culture. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via research Councils UK.

3. Mark Wilson would like to thank the Canadian Centennial Scholarship Fund for supporting his research.

4. Dr. Akshay Rao would like to thank Corpus Christi College for a Research Fellowship.

####

For more information, please click here

Contacts:
Genevieve Maul, Office of Communications
University of Cambridge
Tel: direct, +44 (0) 1223 765542, +44 (0) 1223 332300
Mob: +44 (0) 7774 017464

Copyright © University of Cambridge

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Dream Chip Technologies Presents First 22nm FD-SOI Silicon of New Automotive Driver Assistance SoC: Advanced driver assistance system (ADAS) computer vision SoC developed for European THINGS2DO project with working first silicon fabricated on GLOBALFOUNDRIES’ 22nm FD-SOI Platfor February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Discoveries

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Announcements

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Dream Chip Technologies Presents First 22nm FD-SOI Silicon of New Automotive Driver Assistance SoC: Advanced driver assistance system (ADAS) computer vision SoC developed for European THINGS2DO project with working first silicon fabricated on GLOBALFOUNDRIES’ 22nm FD-SOI Platfor February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Energy

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Quantum Dots/Rods

Particle Works creates range of high performance quantum dots February 23rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Two electrons go on a quantum walk and end up in a qudit: Russian scientists find a way to reliably connect quantum elements December 13th, 2016

Solar/Photovoltaic

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project