Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UT researchers' innovation addresses major challenge of drug delivery

Abstract:
A new physical form of proteins developed by researchers at The University of Texas at Austin could drastically improve treatments for cancer and other diseases, as well as overcome some of the largest challenges in therapeutics: delivering drugs to patients safely, easily and more effectively.

UT researchers' innovation addresses major challenge of drug delivery

Austin, TX | Posted on January 28th, 2012

The protein formulation strategy, developed by faculty and students in the Cockrell School of Engineering's Department of Chemical Engineering, is unprecedented and offers a new and universal approach to drug delivery - one that could revolutionize treatment of cancer, arthritis and infectious disease.

"We believe this discovery of a new highly concentrated form of proteins - clusters of individual protein molecules - is a disruptive innovation that could transform how we fight diseases," said Keith P. Johnston, a chemical engineering professor and member of the National Academy Engineering. "It required integration of challenging contributions in fundamental science and engineering from three of our chemical engineering research groups."

The research, led by Johnston, Chemical Engineering Professor Thomas M. Truskett and Assistant Professor Jennifer Maynard, was published online recently ahead of a print version to appear soon in the ACS Nano journal.

"The real challenge in developing therapeutics is how do you deliver them to patients." Maynard said.

Typically, protein biopharmaceuticals are administered intravenously at dilute concentrations in a hospital or clinic. Scientists and engineers have long tried to produce safe drugs at higher concentrations, so that a patient could self-inject the drugs at home, similar to an insulin shot. But doing so has been stymied by the fact that proteins, in high-concentration formulations, form aggregates that could be dangerous to patients and gels that cannot be injected.

The Cockrell School research team has introduced a new physical form of proteins, whereby proteins are packed into highly concentrated, nanometer-sized clusters that can pass through a needle into a patient to treat disease. The novel composition avoids the pitfalls of previous attempts because drug proteins are clustered so densely that they don't unfold or form dangerous aggregates.

"This general physical concept for forming highly concentrated, yet stable, protein dispersions is a major new direction in protein science," Johnston said.

A key advance came in 2004, when Truskett predicted that protein-based drugs in solution would be stable if they could somehow be formulated at ultra-high concentrations. At that time, Johnston had nanoparticles of concentrated stable protein but didn't know how to disperse them in an injectable form.

In 2009, the team formed protein nanoclusters in water simply by properly adjusting the pH (to lower protein charge) and adding sugar to crowd protein molecules together. Upon dilution or subcutaneous injection into a mouse the proteins separate back to individual stable molecules with biological activity. Once injected, the protein in the bloodstream attacks targeted cells and tumors similarly as for protein delivered via IV therapy. To provide a roadmap for improving the design of nanoclusters, chemical engineering graduate students, Andrea Miller and Ameya Borwankar worked with Truskett and Johnston to develop a new thermodynamic theory.

Another breakthrough for the team came in 2009 when a chemical engineering senior, Brian Wilson, created a transparent dispersion of extremely concentrated protein, which was later found to be formed of nanoclusters.

"Through Brian's discussions about the research both inside and outside of the classroom, numerous undergraduate students at UT are now realizing the enormous opportunities they have to contribute to science, engineering and human health when they get involved in research projects," Johnston said.

Since the research began in 2004, three patent applications have been filed through the university's Office of Technology Commercialization.

The research is funded by the National Science Foundation, the National Institutes of Health, the Welch Foundation, and the Packard Foundation. Starting in 2012, two major pharmaceutical companies will fund the work.

####

For more information, please click here

Contacts:
Melissa Mixon

512-471-2129

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Nanomedicine

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Discoveries

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project