Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Eureka! Kitchen gadget inspires scientist to make more effective plastic electronics

Credit: H. T. Yi, et. al.

Fabricating single crystal organic field-effect transistors using ultra-thin polymer membrane for a gate insulator. In the upper row, the membrane is stretched over the transistor before vacuum is applied. In the lower row, the vacuum has been applied and the membrant is adhering to the organic crystal. Photos on the right are close-up views of the transistor, with the organic semiconductor crystal in red.
Credit: H. T. Yi, et. al.

Fabricating single crystal organic field-effect transistors using ultra-thin polymer membrane for a gate insulator. In the upper row, the membrane is stretched over the transistor before vacuum is applied. In the lower row, the vacuum has been applied and the membrant is adhering to the organic crystal. Photos on the right are close-up views of the transistor, with the organic semiconductor crystal in red.

Abstract:
One day in 2010, Rutgers physicist Vitaly Podzorov watched a store employee showcase a kitchen gadget that vacuum-seals food in plastic. The demo stuck with him. The simple concept - an airtight seal around pieces of food - just might apply to his research: developing flexible electronics using lightweight organic semiconductors for products such as video displays or solar cells.

Eureka! Kitchen gadget inspires scientist to make more effective plastic electronics

New Brunswick, NJ | Posted on January 28th, 2012

"Organic transistors, which switch or amplify electronic signals, hold promise for making video displays that bend like book pages or roll and unroll like posters," said Podzorov. But traditional methods of fabricating a part of the transistor known as the gate insulator often end up damaging the transistor's delicate semiconductor crystals.

Drawing inspiration from the food-storage gadget, Podzorov and his colleagues tried an experiment. They suspended a thin polymer membrane above the organic crystal and created a vacuum underneath, causing the membrane to collapse gently and evenly onto the crystal's surface. The result: a smooth, defect-free interface between the organic semiconductor and the gate insulator.

The researchers reported their success in the journal Advanced Materials. In the article, Podzorov and three colleagues describe how a single-crystal organic field effect transistor (OFET) made with this thin polymer gate insulator boosted electrical performance. The researchers further reported that they could remove and reapply membranes to the same crystal several times without degrading its surface.

Organic transistors electrically resemble silicon transistors in computer chips, but they are made of flexible carbon-based molecules that can be printed on sheets of plastic. Silicon transistors are made in rigid, brittle wafers of silicon.

The methods that scientists previously applied to organic transistor fabrication were based on silicon semiconductor processing, explained Podzorov, assistant professor in the Department of Physics and Astronomy, School of Arts and Sciences. These involved high temperatures, high-energy plasmas or chemical reactions, all of which could damage the delicate organic crystal surface and hinder the transistor's performance.

"People have tendencies to go with something they've known for a long time," he said. "In this case, it doesn't work right."

Podzorov's innovation builds upon a decade of Rutgers research in this field, including his invention of the first single crystal organic transistor in 2003. While his latest innovation is still a ways from commercial reality, he sees an immediate application in the classroom.

"Our technique takes 10 minutes," he said. "It should be exciting for students to actually build these devices and immediately see them work, all within one lab session."

Podzorov was actually trying to solve another problem when he first recalled the food packaging demo. He was thinking about how to protect organic crystals from airborne impurities when his lab shipped samples to collaborating scientists in California and overseas.

"We could place our samples between plastic sheets and pull a vacuum," he said. "Then I thought, ‘why don't we try doing this for our gate insulator?'"

Funding for the research was provided by the U. S. Department of Energy and the Rutgers Institute for Advanced Materials and Devices for Nanotechnology. Collaborators in Podzorov's lab were postdoctoral researchers Hee Taek Yi and Yuanzhen Chen, and undergraduate student Krzysztof Czelen. The department's machine shop made a custom-designed vacuum chamber for the project.

####

For more information, please click here

Contacts:
Carl Blesch

732-932-7084 x616

Copyright © Rutgers University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Advanced Materials journal abstract and article(subscription required to view full article)

Prof. Podzorov's laboratory

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Flexible Electronics

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Govt.-Legislation/Regulation/Funding/Policy

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Researchers find new way to control light with electric fields May 25th, 2017

Chip Technology

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Discoveries

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Solar/Photovoltaic

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project