Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Novel Strategy Improves Cancer Cell Uptake of Nanoparticles

Abstract:
One of the promises of using nanoparticles to deliver potent anticancer agents to tumors is that it is easy to coat nanoparticles with tumor-targeting molecules that should increase the amount of drug that reaches a tumor while decreasing the amount of drug that hits healthy tissue. Taking this idea one step further, researchers at Harvard Medical School and the Massachusetts Institute of Technology have developed a strategy for identifying what could be called tumor uptake molecules for use on nanoparticles. This new class of tumor-targeting agents boosts the amount of drug-loaded nanoparticles that get into cancer cells.

Novel Strategy Improves Cancer Cell Uptake of Nanoparticles

Bethesda, MD | Posted on January 19th, 2012

Omid Farokhzad and Robert Langer, both members of the MIT-Harvard Center for Cancer Nanotechnology Excellence (CCNE), led this study. The researchers published their findings in the journal ACS Nano.

The MIT-Harvard CCNE team focused their discovery efforts on molecules known as aptamers, which are small pieces of RNA or DNA that form three-dimensional shapes capable of binding tightly and specifically to designated targets. In most instances, aptamers are constructed to target a known biomolecule—a disease-associated protein, for example. In this case, the investigators took a different approach and instead targeted two biological properties—the ability to distinguish a prostate cancer cell from a normal prostate cell and the ability to get into the diseased cells. They performed this feat by starting with a huge pool of random RNA sequences and through an iterative process gradually enriched this pool for RNAs that targeted and entered prostate cancer cells. After 12 cycles of this enrichment process, the investigators identified a small number of aptamers that each displayed superior tumor targeting and uptake properties.

The researchers chose one of these aptamers and linked it to a polymer nanoparticle loaded with docetaxel, a potent anticancer agent. Experiments have so far shown that this construct has no effect on normal cells but is highly toxic to prostate cancer cells. The investigators are planning further studies in animal models of prostate cancer. They note that this approach is easily modified to finding targeting and uptake aptamers for any type of cancer cell.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection."

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project