Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Perfectly spherical gold nanodroplets produced with the smallest-ever nanojets

Similar to the way water backjets eject droplets of water on the surface of a pond, powerful laser pulses can locally melt gold nanostructures and produce gold nanojets, ejecting perfectly spherical gold nanodroplets.
Similar to the way water backjets eject droplets of water on the surface of a pond, powerful laser pulses can locally melt gold nanostructures and produce gold nanojets, ejecting perfectly spherical gold nanodroplets.

Abstract:
KU Leuven researcher Ventsislav Valev and an international team of scientists have developed a new method for optical manipulation of matter at the nanoscale. Using ‘plasmonic hotspots' - regions with electric current that heat up very locally - gold nanostructures can be melted and made to produce the smallest nanojets ever observed. The tiny gold nanodroplets formed in the nanojets, are perfectly spherical, which makes them interesting for applications in medicine.

Perfectly spherical gold nanodroplets produced with the smallest-ever nanojets

Leuven, Belgium | Posted on January 14th, 2012

The ‘backjet' phenomenon on which the method turns can be compared to a pebble being dropped into water. Tightly focused ultrafast laser pulses carry sufficient energy to locally melt the surface of a gold film. When a laser pulse of light hits the film, a nanoscale backjet - a nanojet - of molten gold surges upward.

As the name suggests, nanojets on the surface of a homogeneous gold film are incredibly small, their size being determined by the distribution of energy in the light pulse. This distribution of energy is in turn dependent on the wavelength of light. Initially, scientists anticipated that nanojets could not be significantly smaller than the wavelength of light. In this study however, Ventsislav Valev and his colleagues show that nanojets can in fact be made much smaller with the help of ‘plasmonic hotspots'.

Plasmonic hotspots are regions on the surface of metal nanostructures where light causes very strong oscillation of the electrons. Because electron oscillations constitute an electric current and because electric currents heat up the material the same way an electric stove heats up in the kitchen, the plasmonic hotspots are extremely hot. So hot that they can melt the gold in a spot much smaller than the wavelength of light. Dr. Valev and his colleagues were successfully able to demonstrate that this tiny little pool of molten gold can give rise to the smallest nanojets ever observed.

The gold nanodroplets propelled upward by the nanojets solidify in flight, producing perfectly spherical nanoparticles. These gold nanodroplets can be collected and used for medical applications including cancer treatment. The nanoparticles can be attached to molecules and injected in the blood. Once the molecules attach to cancer cells, light can be used to heat up the gold nanodroplets and destroy the cancer cells. Currently, the gold nanoparticles used in medications are chemically synthesised. These chemically synthesised gold nanoparticles have an unavoidably granular aspect. Conversely, gold nanodroplets created by the plasmonic nanojet method detailed by Dr. Valev and his colleagues are perfectly spherical, ensuring a better efficiency.

The study was conducted in collaboration with scientists from Germany, the United Kingdom, Bulgaria, Russia and Singapore and is published in the latest edition of the journal Advanced Materials.

####

For more information, please click here

Contacts:
Dr. Ventsislav Valev
Molecular Imaging and Photonics
Faculty of Science
University of Leuven


Griet Van der Perre
+32 16 32 40 08

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic informationVentsislav K. Valev, Denitza Denkova, Xuezhi Zheng, Arseniy I. Kuznetsov, Carsten Reinhardt, Boris N. Chichkov, Gichka Tsutsumanova, Edward J. Osley, Veselin Petkov, Ben De Clercq, Alejandro V. Silhanek, Yogesh Jeyaram, Vladimir Volskiy, Paul A. Warburton, Guy A. E. Vandenbosch, Stoyan Russev, Oleg A. Aktsipetrov, Marcel Ameloot, Victor V. Moshchalkov, Thierry Verbiest, Plasmon-Enhanced Sub-Wavelength Laser Ablation: Plasmonic Nanojets, Advanced Materials, Article first published online: 9 JAN 2012, DOI: 10.1002/adma.201103807:

Related News Press

News and information

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Nanomedicine

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Discoveries

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Announcements

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Photonics/Optics/Lasers

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

A new trick for controlling emission direction in microlasers June 20th, 2016

Research partnerships

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic