Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotube “Glow Sticks” Transform Surface Science Tool Kit: Los Alamos scientists detect and track single molecules with nanoscale carbon cylinders

Artist's concept of nanotubes on the liquid surface.
Image from Los Alamos National Laboratory
Artist's concept of nanotubes on the liquid surface.

Image from Los Alamos National Laboratory

Abstract:
Many physical and chemical processes necessary for biology and chemistry occur at the interface of water and solid surfaces. Researchers at Los Alamos National Laboratory publishing in Nature Nanotechnology have now shown that semiconducting carbon nanotubes—light emitting cylinders of pure carbon—have the potential to detect and track single molecules in water.

Nanotube “Glow Sticks” Transform Surface Science Tool Kit: Los Alamos scientists detect and track single molecules with nanoscale carbon cylinders

Los Alamos, NM | Posted on January 10th, 2012

Using high-speed microscopic imaging, they found that nanotubes could both detect and track the motion of individual molecules as they bombard the surface at the water interface. Traditional techniques to investigate molecules on surfaces cannot be used in water because the study requires low-pressure atmospheres such as one finds in space. The team is hopeful that their work will lead to practical,nanotube-based, single-molecule detectors in aqueous biological and chemical environments.

Molecular motion and attachment to surfaces is important for driving chemistry that ranges from the production of ammonia on metal to the enzymatic oxidation of glucose. The attachment takes place through sporadic motion followed by a collision with the surface to which the molecule sticks. Molecules can then move along the surface where they can collide with other molecules and undergo chemical reactions.

In traditional "surface science" experiments these processes are imaged in a vacuum where other molecular species from the air cannot blur the image. In solutions such as water, there has been no way to do this directly. Consequently, researchers have been searching for a material that can be used in water todetect individual molecules for surface-science applications.

Inspired by this challenge a team of Los Alamos scientists (Jared Crochet, Juan Duque, Jim Werner, and Steve Doorn) at LANL's Center for Integrated Nanotechnologies explored using light-emitting carbon nanotubes as detectors. With techniques developed by others, the team used soap and water to stabilize the nanotubes where they could be imaged directly with a high-speed video camera. When illuminated with laser light these tubes shine brightly, like long glow sticks.

When the glowing nanotubes are exposed in water to different chemicals, the researchers saw that certain spots of the tube would briefly go dim as the molecules bombarded the surface. This allowed them to determine how effectively certain molecules would stick to the surface. The researchers were also able to track the motion of molecules as they moved along the surface. The team is now examining how chemical reactions proceed on nanotube surfaces to better understand chemistry at the water interface forbiological and chemical applications.

The paper is titled "Photoluminescence imaging of electronic impurity-induced exciton quenching in single-walled carbon nanotubes," and can be found online at www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2011.227.html

It can also be accessed via digital object number dx.doi.org/10.1038/NNANO.2011.227. The DOI can be used to retrieve the abstract and full text (Nature abstracts are available to everyone, full text only to subscribers).

This work was funded by and performed at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, isoperated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.
Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Nancy Ambrosiano
505-667-0471

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Imaging

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Display technology/LEDs/SS Lighting/OLEDs

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Laboratories

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Tools

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project