Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotube “Glow Sticks” Transform Surface Science Tool Kit: Los Alamos scientists detect and track single molecules with nanoscale carbon cylinders

Artist's concept of nanotubes on the liquid surface.
Image from Los Alamos National Laboratory
Artist's concept of nanotubes on the liquid surface.

Image from Los Alamos National Laboratory

Abstract:
Many physical and chemical processes necessary for biology and chemistry occur at the interface of water and solid surfaces. Researchers at Los Alamos National Laboratory publishing in Nature Nanotechnology have now shown that semiconducting carbon nanotubes—light emitting cylinders of pure carbon—have the potential to detect and track single molecules in water.

Nanotube “Glow Sticks” Transform Surface Science Tool Kit: Los Alamos scientists detect and track single molecules with nanoscale carbon cylinders

Los Alamos, NM | Posted on January 10th, 2012

Using high-speed microscopic imaging, they found that nanotubes could both detect and track the motion of individual molecules as they bombard the surface at the water interface. Traditional techniques to investigate molecules on surfaces cannot be used in water because the study requires low-pressure atmospheres such as one finds in space. The team is hopeful that their work will lead to practical,nanotube-based, single-molecule detectors in aqueous biological and chemical environments.

Molecular motion and attachment to surfaces is important for driving chemistry that ranges from the production of ammonia on metal to the enzymatic oxidation of glucose. The attachment takes place through sporadic motion followed by a collision with the surface to which the molecule sticks. Molecules can then move along the surface where they can collide with other molecules and undergo chemical reactions.

In traditional "surface science" experiments these processes are imaged in a vacuum where other molecular species from the air cannot blur the image. In solutions such as water, there has been no way to do this directly. Consequently, researchers have been searching for a material that can be used in water todetect individual molecules for surface-science applications.

Inspired by this challenge a team of Los Alamos scientists (Jared Crochet, Juan Duque, Jim Werner, and Steve Doorn) at LANL's Center for Integrated Nanotechnologies explored using light-emitting carbon nanotubes as detectors. With techniques developed by others, the team used soap and water to stabilize the nanotubes where they could be imaged directly with a high-speed video camera. When illuminated with laser light these tubes shine brightly, like long glow sticks.

When the glowing nanotubes are exposed in water to different chemicals, the researchers saw that certain spots of the tube would briefly go dim as the molecules bombarded the surface. This allowed them to determine how effectively certain molecules would stick to the surface. The researchers were also able to track the motion of molecules as they moved along the surface. The team is now examining how chemical reactions proceed on nanotube surfaces to better understand chemistry at the water interface forbiological and chemical applications.

The paper is titled "Photoluminescence imaging of electronic impurity-induced exciton quenching in single-walled carbon nanotubes," and can be found online at www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2011.227.html

It can also be accessed via digital object number dx.doi.org/10.1038/NNANO.2011.227. The DOI can be used to retrieve the abstract and full text (Nature abstracts are available to everyone, full text only to subscribers).

This work was funded by and performed at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, isoperated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.
Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Nancy Ambrosiano
505-667-0471

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Chemistry

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Laboratories

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Working under pressure: Diamond micro-anvils with huge pressures will create new materials October 19th, 2016

Imaging

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Display technology/LEDs/SS Lighting/OLEDs

Trace metal recombination centers kill LED efficiency: UCSB researchers warn that trace amounts of transition metal impurities act as recombination centers in gallium nitride semiconductors November 3rd, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Researchers surprised at the unexpected hardness of gallium nitride: A Lehigh University team discovers that the widely used semiconducting material is almost as wear-resistant as diamonds October 31st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Discoveries

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Tools

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project