Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ORNL experiments prove nanoscale metallic conductivity in ferroelectrics

ORNL researchers used piezoresponse force microscopy to demonstrate the first evidence of metallic conductivity in ferroelectric nanodomains. A representative nanodomain is shown in the PFM image above.
ORNL researchers used piezoresponse force microscopy to demonstrate the first evidence of metallic conductivity in ferroelectric nanodomains. A representative nanodomain is shown in the PFM image above.

Abstract:
The prospect of electronics at the nanoscale may be even more promising with the first observation of metallic conductance in ferroelectric nanodomains by researchers at Oak Ridge National Laboratory.

ORNL experiments prove nanoscale metallic conductivity in ferroelectrics

Oak Ridge, TN | Posted on January 9th, 2012

Ferroelectric materials, which switch their polarization with the application of an electric field, have long been used in devices such as ultrasound machines and sensors. Now, discoveries about ferroelectrics' electronic properties are opening up possibilities of applications in nanoscale electronics and information storage.

In a paper published in the American Chemical Society's Nano Letters, the ORNL-led team demonstrated metallic conductivity in a ferroelectric film that otherwise acts as an insulator. This phenomenon of an insulator-metal transition was predicted more than 40 years ago by theorists but has eluded experimental proof until now.

"This finding unambiguously identifies a new conduction channel that percolates through the insulating matrix of the ferroelectric, which opens potentially exciting possibilities to 'write' and 'erase' circuitry with nanoscale dimensions," said lead author Peter Maksymovych of ORNL's Center for Nanophase Materials Sciences.

From an applied perspective, the ability to use only an electric field as a knob that tunes both the magnitude of metallic conductivity in a ferroelectric and the type of charge carriers is particularly intriguing. Doing the latter in a semiconductor would require a change of the material composition.

"Not only can we turn on metallic conductivity, but if you keep changing the bias dials, you can control the behavior very precisely," Maksymovych said. "And the smaller the nanodomain, the better it conducts. All this occurs in the exact same position of the material, and we can go from an insulator to a better metal or a worse metal in a heartbeat or faster. This is potentially attractive for applications, and it also leads to interesting fundamental questions about the exact mechanism of metallic conductivity."

Although the researchers focused their study on a well-known ferroelectric film called lead-zirconate titanate, they expect their observations will hold true for a broader array of ferroelectric materials.

"We also anticipate that extending our studies onto multiferroics, mixed-phase and anti-ferroelectrics will reveal a whole family of previously unknown electronic properties, breaking new ground in fundamentals and applications alike," said co-author and ORNL senior scientist Sergei Kalinin.

The samples used in the study were provided by the University of California at Berkeley. Co-authors on the paper are ORNL's Arthur Baddorf, UC Berkeley's Ying-Hao Chu, Ramamoorthy Ramesh and Pu Yu, and National Academy of Science of Ukraine's Eugene Eliseev and Anna Morozovska. The full paper, "Tunable Metallic Conductance in Ferroelectric Nanodomains," is available at pubs.acs.org/doi/full/10.1021/nl203349b.

Part of this work was supported by the Center for Nanophase Materials Sciences at ORNL. CNMS is one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/. Work at the University of California, Berkeley, was supported by DOE's Office of Science and the Semiconductor Research Corporation. ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

####

For more information, please click here

Contacts:
Morgan McCorkle
Communications and Media Relations
865.574.7308

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Laboratories

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Physics

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NIST physicists 'squeeze' light to cool microscopic drum below quantum limit January 12th, 2017

Insurance

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Research seeks alternatives for reducing bacteria in fresh produce using nanoengineering April 29th, 2015

Liquipel Adds Guarantee to Watersafe Nano-Coating Products at CES: Announced at Booth 25936, South Hall; Billions in Hardware Damage to Be Saved January 8th, 2013

Emerging Risks Report: Examining the case for Insurance in Engineered Nanomaterials December 29th, 2010

Govt.-Legislation/Regulation/Funding/Policy

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Chip Technology

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Discoveries

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project