Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Keeping electronics cool: Findings on modified form of graphene could have impacts in managing heat dissipation in everything from electronics to photovoltaic solar cells to radars

Alexander Balandin
Alexander Balandin

Abstract:
A University of California, Riverside engineering professor and a team of researchers have made a breakthrough discovery with graphene, a material that could play a major role in keeping laptops and other electronic devices from overheating.

Keeping electronics cool: Findings on modified form of graphene could have impacts in managing heat dissipation in everything from electronics to photovoltaic solar cells to radars

Riverside, CA | Posted on January 9th, 2012

Alexander Balandin, a professor of electrical engineering at the UC Riverside Bourns College of Engineering, and researchers from The University of Texas at Austin, The University of Texas at Dallas and Xiamen University in China, have shown that the thermal properties of isotopically engineered graphene are far superior to those of graphene in its natural state.

The research efforts were led by the Professor Rodney S. Ruoff of UT Austin and Balandin, a corresponding author for the paper, "Thermal conductivity of isotopically modified graphene." It was published online Jan. 8 by the journal Nature Materials and will later appear in the print publication.

The results bring graphene - a single-atom thick carbon crystal with unique properties, including superior electrical and heat conductivity, mechanical strength and unique optical absorption - one step closer to being used as a thermal conductor for managing heat dissipation in everything from electronics to photovoltaic solar cells to radars.

"The important finding is the possibility of a strong enhancement of thermal conduction properties of isotopically pure graphene without substantial alteration of electrical, optical and other physical properties," Balandin said. "Isotopically pure graphene can become an excellent choice for many practical applications provided that the cost of the material is kept under control."

He added: "The experimental data on heat conduction in isotopically engineered graphene is also crucially important for developing an accurate theory of thermal conductivity in graphene and other two-dimensional crystals."

The research used the optothermal Raman method, a thermal conductivity measuring technique developed by Balandin. In 2008, Balandin and his group members demonstrated experimentally that graphene is an excellent heat conductor. They also developed the first detailed theory of heat conduction in graphene and related two-dimensional crystals.

The work presented in the Nature Materials paper shows that the thermal conductivity of isotopically engineered graphene is strongly enhanced compared to graphene in its natural state.

Naturally occurring carbon materials, including graphene, are made up of two stable isotopes: about 99 percent of 12C (referred to as "carbon 12") and 1 percent of 13C (referred to as "carbon 13"). The difference between isotopes is in the atomic mass of the carbon atoms. The removal of just about 1 percent of carbon 13, also called isotopic purification, modifies the dynamic properties of crystal lattices and affects their thermal conductivity.

The importance of the present research is explained by practical needs for materials with high thermal conductivity. Heat removal has become a crucial issue for continuing progress in the electronics industry, owing to increased levels of dissipated power as the devices become smaller and smaller. The search for materials that conduct heat well has become essential for the design of the next generation of integrated circuits and three-dimensional electronics. Balandin, who is also founding chair of the materials science and engineering (MS&E) program at UC Riverside, believes graphene will gradually be incorporated into different devices.

Intially, it will likely be used in some niche applications such as thermal interface materials for chip packaging or transparent electrodes in photovoltaic solar cells or flexible displays, he said.

In a few years, it could be used with silicon in computer chips, for example as interconnect wiring or heat spreaders. It also has the potential to benefit other electronic applications, including analog high-frequency transistors, which are used in wireless communications, radar, security systems and imaging.

Balandin and the following researchers contributed to the findings in the Nature Materials paper:

The team at UT Austin, which performed the isotopic purification of graphene, included Ruoff, Shanshan Chen, a post-doctoral fellow, Weiwei Cai a former post-doctoral researcher who is now a professor at the Xiamen University and Columbia Mishra, a graduate student.

The team at UT Dallas, who performed molecular dynamics simulations that compared well with the stronger thermal connectivity of the isotopically engineered graphene, included Kyeongjae Cho, a professor, and Hengji Zhang, graduate student.

####

About University of California - Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion.

For more information, please click here

Contacts:
Sean Nealon

951-827-1287

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nature Materials paper:

Balandin lab:

Alexander Balandin:

Bourns College of Engineering

Related News Press

News and information

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Graphene/ Graphite

Composite Pipe Long Term Testing Facility February 10th, 2016

Graphene decharging and molecular shielding February 8th, 2016

Physics

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Chip Technology

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Discoveries

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Canadian Scientists Develop Innovative Protein Test for Zika February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Announcements

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Research partnerships

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic