Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene reveals its magnetic personality

Abstract:
Can organic matter behave like a fridge magnet? Scientists from The University of Manchester have now shown that it can.

In a report published in Nature Physics, they used graphene, the world's thinnest and strongest material, and made it magnetic.

Graphene reveals its magnetic personality

Manchester, UK | Posted on January 8th, 2012

Graphene is a sheet of carbon atoms arranged in a chicken wire structure. In its pristine state, it exhibits no signs of the conventional magnetism usually associated with such materials as iron or nickel.

Demonstrating its remarkable properties won Manchester researchers the Nobel Prize in Physics in 2010.

This latest research led by Dr Irina Grigorieva and Professor Sir Andre Geim (one of the Nobel prize recipients) could prove crucial to the future of graphene in electronics.

The Manchester researchers took nonmagnetic graphene and then either ‘peppered' it with other nonmagnetic atoms like fluorine or removed some carbon atoms from the chicken wire. The empty spaces, called vacancies, and added atoms all turned out to be magnetic, exactly like atoms of, for example, iron.

"It is like minus multiplied by minus gives you plus", says Dr Irina Grigorieva.

The researchers found that, to behave as magnetic atoms, defects must be far away from each other and their concentration should be low. If many defects are added to graphene, they reside too close and cancel each other's magnetism. In the case of vacancies, their high concentration makes graphene disintegrate.

Professor Geim said: "The observed magnetism is tiny, and even the most magnetized graphene samples would not stick to your fridge.

"However, it is important to reach clarity in what is possible for graphene and what is not. The area of magnetism in nonmagnetic materials has previously had many false positives.

"The most likely use of the found phenomenon is in spintronics. Spintronics devices are pervasive, most notably they can be found in computers' hard disks. They function due to coupling of magnetism and electric current.

"Adding this new degree of functionality can prove important for potential applications of graphene in electronics", adds Dr Grigorieva.

Full bibliographic informationNature Physics. Spin-half paramagnetism in graphene induced by point defects, by R. Nair, M. Sepioni, I-Ling Tsai, O. Lehtinen, J. Keinonen, A. Krasheninnikov, T. Thomson, A. Geim and I. Grigorieva, DOI: 10.1038/NPHYS2183

####

For more information, please click here

Contacts:
Suzanne Ross
+44 (0) 161 275 8384


Daniel Cochlin
Media Relations Officer
The University of Manchester
0161 275 8387

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Graphene/ Graphite

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Discoveries

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Materials/Metamaterials

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

Announcements

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project