Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Now you see it, now you didn't: Cloaking a moment in time

A laser beam passes through a "split-time lens" - a specially designed waveguide that bumps up the wavelength for a while then suddenly bumps it down. The signal then passes through a filter that slows down the higher-wavelength part of the signal, creating a gap in which the cloaked event takes place. A second filter works in the opposite way from the first, letting the lower wavelength catch up, and a final split-time lens brings the beam back to the original wavelength, leaving no trace of what happened during the gap.
A laser beam passes through a "split-time lens" - a specially designed waveguide that bumps up the wavelength for a while then suddenly bumps it down. The signal then passes through a filter that slows down the higher-wavelength part of the signal, creating a gap in which the cloaked event takes place. A second filter works in the opposite way from the first, letting the lower wavelength catch up, and a final split-time lens brings the beam back to the original wavelength, leaving no trace of what happened during the gap.

Abstract:
In movie magic, people and objects can appear or disappear or move from place to place in an instant. Just stop the camera, move things around and start it again. Now, Cornell researchers have demonstrated a similar "temporal cloak" -- albeit on a very small scale -- in the transport of information by a beam of light.

Now you see it, now you didn't: Cloaking a moment in time

Ithaca, NY | Posted on January 5th, 2012

The trick is to create a gap in the beam of light, have the hidden event occur as the gap goes by and then stitch the beam back together. Alexander Gaeta, professor of applied and engineering physics, and colleagues report their work in the Jan. 5 issue of the journal Nature.

The researchers created what they call a time lens, which can manipulate and focus signals in time, analogous to the way a glass lens focuses light in space. They use a technique called four-wave mixing, in which two beams of light, a "signal" and a "pump," are sent together through an optical fiber. The two beams interact and change the wavelength of the signal. To begin creating a time gap, the researchers first bump the wavelength of the signal up, then by flipping the wavelength of the pump beam, bump it down.

The beam then passes through another, very long, stretch of optical fiber. Light passing through a transparent material is slowed down just a bit, and how much it is slowed varies with the wavelength. So the lower wavelength pulls ahead of the higher, leaving a gap, like the hare pulling ahead of the tortoise. During the gap the experimenters introduced a brief flash of light at a still higher wavelength that would cause a glitch in the beam coming out the other end.

Then the split beam passes through more optical fiber with a different composition, engineered to slow lower wavelengths more than higher. The higher wavelength signal now catches up with the lower, closing the gap. The hare is plodding through mud, but the tortoise is good at that and catches up. Finally, another four-wave mixer brings both parts back to the original wavelength, and the beam emerges with no trace that there ever was a gap, and no evidence of the intruding signal.

None of this will let you steal the crown jewels without anyone noticing. The gap created in the experiment was 15 picoseconds long, and might be increased up to 10 nanoseconds, Gaeta said. But the technique could have applications in fiber-optic data transmission and data processing, he added. For example, it might allow inserting an emergency signal without interrupting the main data stream, or multitasking operations in a photonic computer, where light beams on a chip replace wires.

The experiment was inspired, Gaeta said, by a theoretical proposal for a space-time cloak or "history editor" published by Martin McCall, professor of physics at Imperial College in London, in the Journal of Optics in November 2010.

"But his method required an optical response from a material that does not exist," Gaeta said. "Now we've done it in one spatial dimension. Extending it to two [that is, hiding a moment in an entire scene] is not out of the realm of possibility. All advances have to start from somewhere."

The research was funded by the Defense Advanced Research Project Agency and by Cornell's Center for Nanoscale Systems, which is supported by the National Science Foundation and the New York State Division of Science, Technology and Innovation (NYSTAR).

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project