Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene offers protection from intense laser pulses: Researchers from Singapore and the UK have jointly announced a new benchmark in broadband, non-linear optical-limiting behavior using single-sheet graphene dispersions in a variety of heavy-atom solvents and film matrices

The new optical-induced absorption mechanisms [a] Photoexcitation of a dispersed graphene single sheet gives long-lived electron-hole pairs. Further excitation causes the appearance of localized states such as (i) excitons (neutral excited state) or (ii) polarons (charged excited state) due to interactions. [b] For comparison, graphite gives on electron-hole gas that is very short-lived due to fast cooling and re-combination.

Credit: National University of Singapore
The new optical-induced absorption mechanisms [a] Photoexcitation of a dispersed graphene single sheet gives long-lived electron-hole pairs. Further excitation causes the appearance of localized states such as (i) excitons (neutral excited state) or (ii) polarons (charged excited state) due to interactions. [b] For comparison, graphite gives on electron-hole gas that is very short-lived due to fast cooling and re-combination.

Credit: National University of Singapore

Abstract:
Single-sheet graphene dispersion when substantially spaced apart in liquid cells or solid film matrices can exhibit novel excited state absorption mechanism that can provide highly effective broadband optical limiting well below the onset of microbubble or microplasma formation.

Graphene offers protection from intense laser pulses: Researchers from Singapore and the UK have jointly announced a new benchmark in broadband, non-linear optical-limiting behavior using single-sheet graphene dispersions in a variety of heavy-atom solvents and film matrices

Singapore | Posted on December 30th, 2011

Graphenes are single sheets of carbon atoms bonded into a hexagonal array. In nature, they tend to stack to give graphite.

In a breakthrough, researchers from the National University of Singapore (NUS), DSO National Laboratories and University of Cambridge have developed a method to prevent the re-stacking of these sheets by attaching alkyl surface chains to them, while retaining the integrity of the nano-graphene pockets on the sheets.

This method in turn produced a material that can be processed in a solution and dispersible into solvents and film matrices. As a consequence, the researchers observed a new phenomenon. They found that the dispersed graphenes exhibit a giant non-linear optical-absorption response to intense nanosecond laser pulses over a wide spectral range with a threshold that was much lower than that found in carbon black suspensions and carbon nanotubes suspensions. This set a new record in energy limiting onset of 10 mJ/cm^2 for a linear transmittance of 70%.

The mechanism for this new phenomenon is outlined in Figure 1 in which the initially delocalized electron-hole gas localizes at high-excitation densities in the presence of heavy atoms, to produce strong absorbing excitons. The resultant excited-state absorption mechanism can be very effective.

These optical limiting materials can now be used for protection of sensitive sensors and devices from laser damage, and for optical circuits. They can be also used in anti-glare treated devices.

The principal investigator of the NUS Organic Nano Device Laboratory's graphene team, Professor Lay-Lay Chua who is also from the NUS Department of Chemistry and Department of Physics, says: "We found from ultrafast spectroscopy measurements that dispersed graphene sheets switch their behavior from induced optical transparency which is well-known, to induced optical absorption depending on its environment. This is a remarkable finding that shows graphene can still surprise!"

The principal investigator of the graphene team at DSO National Laboratories, Professor Geok-Kieng Lim who is also an Adjunct Professor at NUS Department of Physics, says: "This is an important first step in the development of practical graphene nano-composite films for applications where the graphene sheets remain fully dispersed. The induced change in their non-linear optical behavior is amazing and highly practical!"

####

About National University of Singapore
A leading global university centred in Asia, the National University of Singapore (NUS) is Singapore's flagship university which offers a global approach to education and research, with a focus on Asian perspectives and expertise.

NUS has 16 faculties and schools across three campuses. Its transformative education includes a broad-based curriculum underscored by multi-disciplinary courses and cross-faculty enrichment. Over 36,000 students from 100 countries enrich the community with their diverse social and cultural perspectives.

NUS has three Research Centres of Excellence (RCE) and 21 university-level research institutes and centres. It is also a partner in Singapore's 5th RCE. NUS shares a close affiliation with 16 national-level research institutes and centres. Research activities are strategic and robust, and NUS is well-known for its research strengths in engineering, life sciences and biomedicine, social sciences and natural sciences. It also strives to create a supportive and innovative environment to promote creative enterprise within its community.

For more information, please visit National University of Singapore.

For more information, please click here

Contacts:
Lay-Lay Chua

65-651-64834

Copyright © National University of Singapore

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

'Giant broadband nonlinear optical absorption response in dispersed graphene single sheets' by Geok-Kieng Lim, Zhi-Li Chen, Jenny Clark, Roland G.S. Goh, Wee-Hao Ng, Hong-Wee Tan, Richard H. Friend, Peter K. H. Ho and Lay-Lay Chua was published on 21 August 2011 in Nature Photonics and is available at www.nature.com/nphoton (doi:10.1038/nphoton.2011.177).

Related News Press

News and information

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Graphene/ Graphite

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Bringing graphene speakers to the mobile market (video) September 12th, 2016

Atomic scale pipes available on demand and by design September 9th, 2016

Thin films

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Cambridge Advanced Imaging Centre praises support film consistency and quality from EM Resolutions July 5th, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Announcements

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Photonics/Optics/Lasers

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Research partnerships

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic