Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Penn engineers develop more effective MRI contrast agent for cancer detection

Abstract:
Many imaging technologies and their contrast agents — chemicals used during scans to help detect tumors and other problems — involve exposure to radiation or heavy metals, which present potential health risks to patients and limit the ways they can be applied. In an effort to mitigate these drawbacks, new research from University of Pennsylvania engineers shows a way to coat an iron-based contrast agent so that it only interacts with the acidic environment of tumors, making it safer, cheaper and more effective than existing alternatives.

Penn engineers develop more effective MRI contrast agent for cancer detection

Philadelphia, PA | Posted on December 22nd, 2011

The research was conducted by associate professor Andrew Tsourkas and graduate student Samuel H. Crayton of the department of bioengineering in Penn's School of Engineering and Applied Science. It was published in the journal ACS Nano.

Magnetic resonance imaging, or MRI, is an increasingly common feature of medical care. Using a strong magnetic field to detect and influence the alignment of water molecules in the body, MRI can quickly produce pictures of wide range of bodily tissues, though the clarity of these pictures is sometimes insufficient for diagnoses. To improve the differentiation — or contrast — between tumors and healthy tissue, doctors can apply a contrast agent, such as nanoparticles containing iron oxide. The iron oxide can improve MRI images due to their ability to distort the magnetic field of the scanner; areas they are concentrated in stand out more clearly.

These nanoparticles, which have recently been approved in the United States for clinical use as contrast agents, are literally sugar-coated; an outer layer of dextran keeps the particles from binding or being absorbed by the body and potentially sickening the patient. This non-reactive coating allows the iron oxide to be flushed out after the imaging is complete, but it also means that the particles can't be targeted to a particular kind of tissue.

If the contrast agent could be engineered so it only sticks to tissue that is already diseased, such as tumors, it would solve both problems at once. Scientists have tried this approach by coating nanoparticles with proteins that bind only to receptors found on the exterior of tumors, but not all tumors are the same in this regard.

"One of the limitations of a receptor-based approach is that you just don't hit everything," Tsourkas said. "It's hard to recommend them as a screening tool when you know that the target receptors are only expressed in 30% of tumors."

"One of the reasons we like our approach is that it hits a lot of tumors; almost all tumors exhibit a change in the acidity of their microenvironment."

The Penn engineers took advantage of something known as the Warburg effect, a quirk of tumor metabolism, to get around the targeting problem. Most of the body's cells are aerobic; they primarily get their energy from oxygen. However, even when oxygen is plentiful, cancerous cells use an anaerobic process for their energy. Like overtaxed muscles, they turn glucose into lactic acid, but unlike normal muscles, tumors disrupt the blood flow around them and have a hard time clearing this acid away. This means that tumors almost always have a lower pH than surrounding healthy tissue.

Some imaging technologies, such as magnetic resonance spectroscopy, can also take advantage of tumors' low-pH microenvironments, but they require expensive specialized equipment that is not available in most clinical settings.

By using glycol chitosan — a sugar-based polymer that reacts to acids — the engineers allowed the nanocarriers to remain neutral when near healthy tissue, but to become ionized in low pH. The change in charge that occurs in the vicinity of acidic tumors causes the nanocarriers to be attracted to and retained at those sites.

This approach has another benefit: the more malignant a tumor is, the more it disrupts surrounding blood vessels and the more acidic its environment becomes. This means that the glycol chitosan-coated is a good detector of malignancy, opening up treatment options above and beyond diagnosis.

"You can take any nanoparticle and put this coating on it, so it's not limited to imaging by any means," said Tsourkas. "You could also use it to deliver drugs to tumor sites."

The researchers hope that, within seven to 10 years, glycol-chitosan-coated iron oxide nanoparticles could improve the specificity of diagnostic screening. The ability to accurately detect sites of malignancy by MRI would be an immediate improvement to existing contrast agents for certain breast cancer scans.

"Gadolinium is used as a contrast agent in MRI breast cancer screenings for high-risk patients. These patients are recommended to get an MRI in addition to the usual mammogram, because the sensitivity of mammograms can be poor," said Tsourkas. "The sensitivity of an MRI is much higher, but the specificity is low: the screening detects a lot of tumors, but many of them are benign. Having a tool like ours would allow clinicians to better differentiate the benign and malignant tumors, especially since there has been shown to be a correlation between malignancy and pH."

The research was supported by the National Institutes of Health and the Department of Defense Breast Cancer Research Program.

####

For more information, please click here

Contacts:
Evan Lerner

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Imaging

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Nanomedicine

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE