Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Iranian Researchers Introduce Optimum Scaffold for Bone Tissue Engineering

Abstract:
Iranian researchers at Isfahan University of Technology in association with researchers from Tehran University of Medical Sciences produced an optimum nanocomposite scaffold which can be used in bone tissue engineering.

Iranian Researchers Introduce Optimum Scaffold for Bone Tissue Engineering

Tehran, Iran | Posted on December 19th, 2011

"We made effort to produce biodegradable and bioactive nanocomposite scaffold by using polycaprolactone / fluoro-hydroxyapatite nanoparticles for bone tissue engineering purposes. We wanted the nanocomposite scaffold to have better behavior and solubility rate in comparison with polycaprolactone / hydroxyl apatite scaffolds," Narges Johari, one of the researchers, told INIC.

"To this end, we firstly produced a porous nanocomposite scaffold containing four various weight percentages of fluoro-hydroxyapatite nanoparticles," she continued, saying, "Then, we characterized the microstructure, morphology, porosity, and mechanical properties of the nanocomposite, and we studied its bioactivity in the simulated body fluid (SBF), its degradability in phosphate buffered saline (PBS) solution, and its biocompatibility and cellular non-toxicity. Fluoro-hydroxyapatite nanoparticles used in the production of nanocomposite scaffolds contained 25, 50, 75, and 100% of fluor ion replacement in their structure."

The researcher of the project also elaborated on the obtained results, and said, "The results showed that as the replacement of fluor ion increases in fluoro-hydroxyapatite that played a strengthening role in the structure of nanocomposite scaffold of polycaprolactone / fluoro-hydroxyapatite, pressure strength of the scaffold decreases but its biodegradability increases."

"Generally speaking, we concluded that the optimum nanocomposite scaffold for bone tissue engineering is the one with 40 weight percent of fluoro-hydroxyapatite nanoparticles with porosity of 75%, while 25% of fluor ion replacement existed in its structure."

The researchers of the project seek to present their product for mass-production when investigations about its effect inside the body are completed.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Third Quarter Results July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Third Quarter Results July 27th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Discoveries

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Announcements

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project