Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Iranian Researchers Introduce Optimum Scaffold for Bone Tissue Engineering

Abstract:
Iranian researchers at Isfahan University of Technology in association with researchers from Tehran University of Medical Sciences produced an optimum nanocomposite scaffold which can be used in bone tissue engineering.

Iranian Researchers Introduce Optimum Scaffold for Bone Tissue Engineering

Tehran, Iran | Posted on December 19th, 2011

"We made effort to produce biodegradable and bioactive nanocomposite scaffold by using polycaprolactone / fluoro-hydroxyapatite nanoparticles for bone tissue engineering purposes. We wanted the nanocomposite scaffold to have better behavior and solubility rate in comparison with polycaprolactone / hydroxyl apatite scaffolds," Narges Johari, one of the researchers, told INIC.

"To this end, we firstly produced a porous nanocomposite scaffold containing four various weight percentages of fluoro-hydroxyapatite nanoparticles," she continued, saying, "Then, we characterized the microstructure, morphology, porosity, and mechanical properties of the nanocomposite, and we studied its bioactivity in the simulated body fluid (SBF), its degradability in phosphate buffered saline (PBS) solution, and its biocompatibility and cellular non-toxicity. Fluoro-hydroxyapatite nanoparticles used in the production of nanocomposite scaffolds contained 25, 50, 75, and 100% of fluor ion replacement in their structure."

The researcher of the project also elaborated on the obtained results, and said, "The results showed that as the replacement of fluor ion increases in fluoro-hydroxyapatite that played a strengthening role in the structure of nanocomposite scaffold of polycaprolactone / fluoro-hydroxyapatite, pressure strength of the scaffold decreases but its biodegradability increases."

"Generally speaking, we concluded that the optimum nanocomposite scaffold for bone tissue engineering is the one with 40 weight percent of fluoro-hydroxyapatite nanoparticles with porosity of 75%, while 25% of fluor ion replacement existed in its structure."

The researchers of the project seek to present their product for mass-production when investigations about its effect inside the body are completed.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Nanomedicine

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project