Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New method for enhancing thermal conductivity could cool computer chips, lasers and other devices

This is a pair of boron nanoribbons stuck together on a microdevice used to measure thermal conductivity.

Credit: Deyu Li
This is a pair of boron nanoribbons stuck together on a microdevice used to measure thermal conductivity.

Credit: Deyu Li

Abstract:
The surprising discovery of a new way to tune and enhance thermal conductivity - a basic property generally considered to be fixed for a given material - gives engineers a new tool for managing thermal effects in smart phones and computers, lasers and a number of other powered devices.

New method for enhancing thermal conductivity could cool computer chips, lasers and other devices

Nashville, TN | Posted on December 14th, 2011

The finding was made by a group of engineers headed by Deyu Li, associate professor of mechanical engineering at Vanderbilt University, and published online in the journal Nature Nanotechnology on Dec. 11.

Li and his collaborators discovered that the thermal conductivity of a pair of thin strips of material called boron nanoribbons can be enhanced by up to 45 percent depending on the process that they used to stick the two ribbons together. Although the research was conducted with boron nanoribbons, the results are generally applicable to other thin film materials.

An entirely new way to control thermal effects "This points at an entirely new way to control thermal effects that is likely to have a significant impact in microelectronics on the design of smart phones and computers, in optoelectronics on the design of lasers and LEDs, and in a number of other fields," said Greg Walker, associate professor of mechanical engineering at Vanderbilt and an expert in thermal transport who was not directly involved in the research.

According to Li, the force that holds the two nanoribbons together is a weak electrostatic attraction called the van der Waals force. (This is the same force that allows the gecko to walk up walls.)

"Traditionally, it is widely believed that the phonons that carry heat are scattered at van der Waals interfaces, which makes the ribbon bundles' thermal conductivity the same as that of each ribbon. What we discovered is in sharp contrast to this classical view. We show that phonons can cross these interfaces without being scattered, which significantly enhances the thermal conductivity," said Li. In addition, the researchers found that they could control the thermal conductivity between a high and a low value by treating the interface of the nanoribbon pairs with different solutions.

The enhancement is completely reversible

One of the remarkable aspects of the effect Li discovered is that it is reversible. For example, when the researchers wetted the interface of a pair of nanoribbons with isopropyl alcohol, pressed them together and let them dry, the thermal conductivity was the same as that of a single nanoribbon. However, when they wetted them with pure alcohol and let them dry, the thermal conductivity was enhanced. Then, when they wetted them with isopropyl alcohol again, the thermal conductivity dropped back to the original low value.

"It is very difficult to tune a fundamental materials property such as thermal conductivity and the demonstrated tunable thermal conductivity makes the research especially interesting," Walker said.

One of the first areas where this new knowledge is likely to be applied is in thermal management of microelectronic devices like computer chips. Today, billions to trillions of transistors are jammed into chips the size of a fingernail. These chips generate so much heat that one of the major factors in their design is to prevent overheating. In fact, heat management is one of the major reasons behind today's multi-core processor designs.

"A better understanding of thermal transport across interfaces is the key to achieving better thermal management of microelectronic devices," Li said.

Discovery may improve design of nanocomposites

Another area where the finding will be important is in the design of "nanocomposites" - materials made by embedding nanostructure additives such as carbon nanotubes to a host material such as various polymers - that are being developed for use in flexible electronic devices, structural materials for aerospace vehicles and a variety of other applications.

###
Collaborators on the study were post-doctoral research associate Juekan Yang, graduate students Yang Yang and Scott Waltermire from Vanderbilt; graduate students Xiaoxia Wu and Youfei Jiang, post-doctoral research associate Timothy Gutu, research assistant professor Haitao Zhang, and Associate Professor Terry T. Xu from the University of North Carolina; Professor Yunfei Chen from the Southeast University in China; Alfred A. Zinn from Lockheed Martin Space Systems Company; and Ravi Prasher from the U.S. Department of Energy.

The research was performed with financial support from the National Science Foundation, Lockheed Martin's Engineering & Technology University Research Initiatives program and the Office of Naval Research.

Visit Research News @ Vanderbilt for more research news from Vanderbilt.

####

For more information, please click here

Contacts:
David F Salisbury

615-343-6803

Copyright © Vanderbilt University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead to Present at Jefferies 2015 Hepatitis B Summit August 5th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Atomic view of microtubules: Berkeley Lab researchers achieve record 3.5 angstroms resolution and visualize action of a major microtubule-regulating protein August 4th, 2015

Small tilt in magnets makes them viable memory chips August 3rd, 2015

Vaccine with virus-like nanoparticles effective treatment for RSV, study finds August 3rd, 2015

MIPT researchers clear the way for fast plasmonic chips August 3rd, 2015

Chip Technology

Small tilt in magnets makes them viable memory chips August 3rd, 2015

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

MIPT researchers clear the way for fast plasmonic chips August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Discoveries

World's quietest gas lets physicists hear faint quantum effects August 4th, 2015

Artificial blood vessels become resistant to thrombosis August 4th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Announcements

Arrowhead to Present at Jefferies 2015 Hepatitis B Summit August 5th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Military

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Take a trip through the brain July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Photonics/Optics/Lasers

Pixelligent Launches New PixClear® Light Extraction Materials for OLED Lighting August 4th, 2015

The annual meeting on High Power Diode Lasers & Systems will be held as part of the Enlighten Conference, October 14th & 15th August 4th, 2015

MIPT researchers clear the way for fast plasmonic chips August 3rd, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Research partnerships

University of Puerto Rico announces August 11th as the launch date for their NASA mission to look for life in space – XEI reports August 3rd, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project