Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > DNA damage across a cellular barrier depends on barrier thickness

Abstract:
The use of nanoparticles in medicine is ever increasing and it is important to understand the effects these particles might have on human tissues and health in general.

DNA damage across a cellular barrier depends on barrier thickness

Bristol, UK | Posted on December 12th, 2011

Scientists have shown that signalling molecules that damage the DNA of cells grown underneath a barrier are transmitted only when the barrier is more than one layer thick and DNA damage and cytokine release is signalled across the barrier.

The research was carried out by a team at the University of Bristol and colleagues, and is published in Nature Nanotechnology.

The team created a cellular barrier by culturing BeWo cells, a type of cell line widely used to model the placental barrier, on a porous membrane support. They created a monolayer and a bilayer barrier by culturing the cells for four and seven days, respectively.

The membrane was inserted into a well of a cell culture plate so that it was suspended a few millimetres above the bottom surface where they grew a different type of cell. The top of the barrier was exposed to nanoparticles and DNA damage was measured in the underlying cells.

Contrary to what the team expected, signalling molecules that damage the DNA of cells grown underneath the barrier were transmitted only across bilayer and multilayer barriers, but not monolayer barriers.

The research team also grew corneal epithelial cells on a membrane, as a monolayer for three days, to determine whether the signalling observed for trophoblast cell barriers was cell-specific. Similar to the BeWo findings, DNA damage was observed in fibroblasts, the connective tissue cells, below the nanoparticle-exposed bilayered barriers, but not below monolayered barriers.

The research team have previously shown that metal nanoparticles damaged the DNA in cells on the other side of a cellular barrier. The nanoparticles did not cause damage by passing through the barrier, but generated signalling molecules within the barrier cells that were then transmitted to cause damage in cells the other side of the barrier.

Dr Patrick Case, Consultant Senior Lecturer in Orthopaedic Surgery and Pathology in the School of Clinical Sciences and senior author on the study, said: "If the importance of barrier thickness in signalling is a general feature for all types of barriers, our results may offer a principle with which to limit the adverse effects of nanoparticle exposure and offer new therapeutic approaches."

Dr Aman Sood, Research Assistant in the School of Clinical Sciences and lead author on the paper, said: "We wanted to test whether these indirect effects of nanoparticles might vary for different types of barrier. Using in vitro, ex vivo and in vivo models, our research has shown that the indirect effects of nanoparticles depend on the thickness of the cellular barrier.

"Bilayered or multilayered barriers allow DNA damaging signalling to cause indirect toxicity, whereas monolayered barriers do not. Our findings have significant implications for nanotoxicology."

Cellular barriers offer important protection against particle exposure and exist in several morphological forms within the body. For example, the corneal epithelial barrier, which together with the tear film prevents pathogens, allergens and irritants from entering the eye, is multilayered.

However, the blood-brain barrier, which restricts the diffusion of microscopic objects such as bacteria into the cerebrospinal fluid, consists of a monolayered barrier of endothelial cells supported by astrocytic end feet. The placental barrier regulates the exchange of substances between the fetal and maternal blood and alters in appearance during pregnancy.

The findings suggest that nanoparticles can cause indirect DNA damage in vitro across trophoblast and corneal barriers, and cause cytokine and chemokine release across corneal barriers.

The research team has shown that indirect toxicity is possible in mice and from human placental tissue. The results suggest that signals for DNA damage can cross cell barriers through a pathway that involves gap junctions. However, the common theme is that these types of signalling were noted only when the barriers were bilayered or multilayered. If this is a general feature for all barriers it offers a principle to apply to nanotoxicity that may not only limit the adverse effects of nanoparticle exposure but may also offer some novel therapeutic possibilities.

This project has been supported by the Wellcome Trust and by a grant from the Medical Research Council.

Drs Patrick Case and Aman Sood wish to thank their colleagues in the research team at the University's School of Clinical Sciences, School of Physiology and Pharmacology, Bristol Heart Institute, School of Cellular and Molecular Medicine, Department of Histopathology at Southmead Hospital and the Bristol Musculoskeletal Research Unit for their work on the paper.

####

For more information, please click here

Copyright © University of Bristol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper: Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. A Sood, S Salih, D Roh, L Lacharme-Lora, M Parry, B Hardiman, R Keehan, R Grummer, E Winterhager, P J Gokhale, P W Andrews, C Abbott, K Forbes, M Westwood, J D Aplin, E Ingham, I Papageorgiou, M Berry, J Liu, A D Dick, R J Garland, N Williams, R Singh, A K Simon, M Lewis, J Ham, L Roger, D M Baird, L A Crompton, M A Caldwell, H Swalwell, M Birch-Machin, G Lopez-Castejon, A Randall, H Lin, M-S Suleiman, W H Evans, R Newson and C P Case. Nature Nanotechnology, 6, 824833 (2011). Published online 06 November 2011.

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Safety-Nanoparticles/Risk management

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic