Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NTU-led research probes potential link between cancer and a common chemical in consumer products

Abstract:
A study led by a group of Nanyang Technological University (NTU) researchers has found that a chemical commonly used in consumer products can potentially cause cancer.

NTU-led research probes potential link between cancer and a common chemical in consumer products

Singapore | Posted on November 29th, 2011

The chemical, Zinc Oxide, is used to absorb harmful ultra violet light. But when it is turned into nano-sized particles, they are able to enter human cells and may damage the user's DNA. This in turn activates a protein called p53, whose duty is to prevent damaged cells from multiplying and becoming cancerous. However, cells that lack p53 or do not produce enough functional p53 may instead develop into cancerous cells when they come into contact with Zinc Oxide nanoparticles.

The study is led by Assistant Professor Joachim Loo, 34, and Assistant Professor Ng Kee Woei, 37, from NTU's School of Materials Science and Engineering. They worked with Assistant Professor David Leong, 38, from the Department of Chemical and Biomolecular Engineering, National University of Singapore, a joint senior author of this research paper.

The findings suggest that companies may need to reassess the health impact of nano-sized Zinc Oxide particles used in everyday products. More studies are also needed on the use and concentration levels of nanomaterials in consumer products, how often a consumer uses them and in what quantities.

"Currently there is a lack of information about the risks of the nanomaterials used in consumer products and what they can pose to the human body. This study points to the need for further research in this area and we hope to work with the relevant authorities on this," said Asst Prof Loo.

The groundbreaking research findings were published in this month's edition of Biomaterials, one of the world's top journals in the field of biomaterials research. The breakthrough also validated efforts by Asst Prof Loo and Asst Prof Ng to pioneer a research group in the emerging field of nanotoxicology, which is still very much in its infancy throughout the world.

Nanotoxicology studies materials to see if they are toxic or harmful when they are turned into nano-sized particles. This is because nanomaterials usually have very different properties when compared to when the materials are of a larger size.

Asst Prof Ng said the team will carry out further research as the DNA damage brought about by nano-sized Zinc Oxide particles is currently a result of an unknown mechanism. But what is clear is that besides causing DNA damage, nanoparticles can also cause other harmful effects when used in high doses.

"From our studies, we found that nanoparticles can also increase stress levels in cells, cause inflammation or simply kill cells," said Asst Prof Ng who added that apart from finding out the cellular mechanism, more focused research is also expected to ascertain the physiological effects and damage that nano-sized Zinc Oxide particles can cause.

Asst Prof Loo pointed out that besides enhancing the understanding of the potential risks of using nanomaterials, advancements in nanotoxicology research will also help scientists put nanomaterials to good use in biomedical applications.

For example, although killing cells in our bodies is typically undesirable, this becomes a positive outcome if it can be effectively directed towards cancer cells in the body. At the same time, the team is also studying how nanomaterials can be "re-designed" to pose a lesser risk to humans, yet still possess the desired beneficial properties.

This research discovery is one of the latest in a series of biomedical breakthroughs by NTU in healthcare. Future healthcare is one of NTU's Five Peaks of Excellence with which the university aims to make its mark globally under the NTU 2015 five-year strategic plan. The other four peaks are sustainable earth, new media, the best of the East and West, and innovation.

Moving forward, the team hopes to work with existing and new collaborative partners, within and outside of Singapore, to orchestrate a more concerted effort towards the advancement of the fledgling field of nanotoxicology here, with the aim of helping regulatory bodies in Singapore formulate guidelines to protect consumer interests.

The research team would also like to work with the European Union to uncover the risks involving nanomaterials and how these materials should be regulated before they are made commercially available. Asst Prof Joachim Loo, who received his Bachelor and Doctorate degrees from NTU, was the only Singaporean representative in a recent nanotechnology workshop held in Europe. At the workshop, it was agreed that research collaborations in nanotoxicology between EU and South-east Asia should be increased.

####

About Nanyang Technological University
Nanyang Technological University (NTU) is a research-intensive university with globally acknowledged strengths in science and engineering. The university has roots that go back to 1955 when Nanyang University was set up. Today, NTU has four colleges with 12 schools, and four autonomous entities, the National Institute of Education, S Rajaratnam School of International Studies, Earth Observatory of Singapore, and Singapore Centre on Environmental Life Sciences Engineering.

For more information, please click here

Contacts:
Lester Kok
Assistant Manager
Corporate Communications Office
Nanyang Technological University
Tel: 6790 6804
Email:

Copyright © Nanyang Technological University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Discoveries

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Announcements

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnanos nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Safety-Nanoparticles/Risk management

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Sunblock poses potential hazard to sea life August 20th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE