Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Fighting Parkinson's with carbon nanoparticles

Abstract:
One of the problems affecting the human nervous system is dopamine deficiency. But testing of dopamine concentration is costly and requires sophisticated equipment not available in a doctor's office. Enter a team of Polish scientists who developed a method enabling the detection of dopamine in solutions both easily and cheaply, even in the presence of interferences. The study is an outcome of the NOBLESSE ('Nanotechnology, biomaterials and alternative energy source for the European Research Area (ERA))' project, which is backed with EUR 3.3 million under the 'Regions of Knowledge' Theme of the EU's Seventh Framework Programme (FP7). The results are published in the journal Biosensors and Bioelectronics.

Fighting Parkinson's with carbon nanoparticles

Warsaw, Poland | Posted on November 28th, 2011

Scientists at the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw coated new electrodes with carbon nanoparticles deposited on silicate submicroparticles to get the targeted result. They applied the electrodes so as to determine dopamine concentration in solutions in the presence of uric and ascorbic acids, and paracetamol, substances that get in the way of dopamine analysis.

This latest development to detect dopamine could clear the path for securing fast and inexpensive medical tests that doctors can use even in their offices. This information will help physicians determine the likelihood of a patient suffering from popular nervous system disorders including Parkinson's disease.

The researchers developed the electrodes by alternating layers of silicate submicroparticles and carbon nanoparticles. According to the team, the size of the silicate submicroparticles ranges from 100 nanometres to 300 nanometres (billionth parts of a metre). Being nonconductive, they are used only as a framework extending the electrode surface. Carbon nanoparticles, ranging between 8 nanometres and 18 nanometres in size, densely coat the silicate particles that form the actual conductive working surface.

'Carbon nanoparticles have negatively charged functional groups, and the silicates positively charged ones,' explains doctoral student Anna Celebanska of the IPC PAS. 'The electrostatic interactions between them are quite strong. We checked that by multiple repeating of the immersion, a "sandwich" consisting of up to 24 layers can be obtained on the electrode surface.'

The scientists applied the new electrodes for dopamine sensing in solutions. The carbon nanoparticle-coated electrodes are placed inside a prepared solution containing the same, and the electric potential is then applied. They say dopamine is electrochemically active and can be oxidised by adjusting the potential value.

'The results of the completed tests turned out very good,' Ms Celebanska says. 'Our method is among the most sensitive methods for dopamine sensing. It allows to detect dopamine at concentrations as low as 10-7 mole per litre in the presence of interferences at concentrations up to 10-3 mole per litre.'

Commenting on the results of the study, Professor Marcin Opallo [z1]says: 'The method has a natural detection threshold, and that's why we can conclude on dopamine deficiency in the body. How large is the actual deficiency? At present we cannot answer the question. We hope, however, for further increase in the method's sensitivity.'

####

For more information, please click here

Copyright © Cordis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS):

Biosensors and Bioelectronics:

Related News Press

News and information

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Nanomedicine

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia March 11th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

Computer-designed vaccine elicits potent antibodies against RSV: The nanoparticle platform for this respiratory syncytial virus study will be applied to vaccine research on flu, HIV, and more; Seattle startup Icosavax will advance related clinical trials March 8th, 2019

CEA-Leti Breakthrough Opens Path to New Vaccine for HIV: Lipidots Platform Strengthens Immune Response to Protein That Is Key to HIV Vaccine; Results Presented in Nature Publishing Group’s npj Vaccines February 27th, 2019

Discoveries

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Announcements

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project