Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Defying Expectation - Cellular Uptake of Nanoparticles

Abstract:
Where previously materials with useful properties have seen widespread application prior to the discovery of their potentially undesirable behaviours - asbestos comes to mind - the introduction of new materials to our living and working environments is now preceded by ever more complex and rigourous testing.

Defying Expectation - Cellular Uptake of Nanoparticles

Germany | Posted on November 24th, 2011

Nanomaterials in particular have become a part of the collective consciousness, and not just because of the myriad cautionary science fiction based on this size regime: Nanoparticles of all shapes and compositions are popping up with increasing regularity in research fields from electronics to medicine but, because of their often surprisingly different behaviours as compared to their bulk counterparts, it is even more important to be able to predict and control their interactions before giving them the green light.

As regards the human body's ability to deal with foreign materials, studies of the uptake and retention of nanoparticles in different organs are becoming more frequent in an effort to prove or improve the safety of these particles in environments where we are likely to come into direct contact with them.

Medicine is an obvious example, where nanoparticles have shown great promise as agents for targeted drug or gene delivery, chemotherapy, and non-invasive imaging. However, in such cases it is highly desirable to be able to engineer particles able to evade the body's clearance mechanisms, at least for long enough to deliver a drug payload to an appropriate site in the body, for example.

With that in mind, a group working in Dublin has investigated the quantitative effect of particle size on the uptake efficiency and localisation of carboxylated polystyrene nanoparticles across cell lines from different parts of the human body, representative of the main avenues of exposure to such particles, as well as the variation in uptake kinetics for the different cell types. Their confocal microscopy and flow cytometry results suggest that nanoparticle uptake defies the expected size limits for uptake processes: a result which has important implications for the future safety assessments of these nanomaterials.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Tiago dos Santos, Small, 2011 ; DOI: 10.1002/smll.201101076

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project