Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > University of Twente provides alternative to optical semiconductor amplifiers: Potential optical amplification of more than one hundredfold

Electron microscope image of a waveguide structure, superimposed with a measured intensity profile of the light trapped within it.
Electron microscope image of a waveguide structure, superimposed with a measured intensity profile of the light trapped within it.

Abstract:
Researchers at the University of Twente's MESA+ research institute have developed a material capable of optical amplifications that are comparable to those achieved by the best, currently available semiconductor optical amplifiers. The researchers expect that this material will accelerate data communication and, ultimately, provide an alternative to short distance data communication (at the μm-cm scale). On 16 November, University of Twente researcher Dimitri Geskus will defend his PhD thesis based on this research, which he carried out at the Faculty of Electrical Engineering, Mathematics and Computer Science.

University of Twente provides alternative to optical semiconductor amplifiers: Potential optical amplification of more than one hundredfold

Enschede, The Netherlands | Posted on November 18th, 2011

The increasingly exacting requirements being imposed on data communication are boosting demand for high-speed optical amplifiers. Current optical amplifiers suffer from the drawback that their speed is limited. Researchers at the university have now developed a material capable of optical amplifications which match those achieved using the best, currently available semiconductor optical amplifiers, but at potentially higher data communication rates. This material consists of thin crystalline layers whose optical properties were specially designed for the optical circuits found on chips. The researchers can fine-tune the properties of these thin crystalline layers by changing their composition. Using a clever trick, they were able to embed much higher concentrations of optically active Ytterbium ions (Ytterbium is a rare-earth element) in the crystal. In this way, they have boosted the optical amplification of currently available rare-earth-doped materials by more than one hundredfold. This will ultimately pave the way for faster and cheaper optical data communication.

PhD research
Dimitri Geskus carried out his PhD research at the MESA+ research institute's Integrated Optical Microsystems department. His work was supervised by Prof. Markus Pollnau. The research was partially funded by Prof. Pollnau's personal VICI grant from the Dutch Organization for Scientific Research (NWO).
Details of this work, drawn from Mr Geskus' dissertation, were recently published in the leading scientific journal Advanced Materials.

####

For more information, please click here

Contacts:
Science Information Officer
Joost Bruysters
(+31-(0)53-4892773/+31-(0)6 1048 8228)

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Chip Technology

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Optical computing/ Photonic computing

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Novel solid-state nanomaterial platform enables terahertz photonics February 17th, 2015

Light in the Moebius strip: A Moebius strip created from laser light opens up new possibilities for material processing and for micro- and nanotechnology February 13th, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Announcements

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

Photonics/Optics/Lasers

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE