Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > University of Twente provides alternative to optical semiconductor amplifiers: Potential optical amplification of more than one hundredfold

Electron microscope image of a waveguide structure, superimposed with a measured intensity profile of the light trapped within it.
Electron microscope image of a waveguide structure, superimposed with a measured intensity profile of the light trapped within it.

Abstract:
Researchers at the University of Twente's MESA+ research institute have developed a material capable of optical amplifications that are comparable to those achieved by the best, currently available semiconductor optical amplifiers. The researchers expect that this material will accelerate data communication and, ultimately, provide an alternative to short distance data communication (at the μm-cm scale). On 16 November, University of Twente researcher Dimitri Geskus will defend his PhD thesis based on this research, which he carried out at the Faculty of Electrical Engineering, Mathematics and Computer Science.

University of Twente provides alternative to optical semiconductor amplifiers: Potential optical amplification of more than one hundredfold

Enschede, The Netherlands | Posted on November 18th, 2011

The increasingly exacting requirements being imposed on data communication are boosting demand for high-speed optical amplifiers. Current optical amplifiers suffer from the drawback that their speed is limited. Researchers at the university have now developed a material capable of optical amplifications which match those achieved using the best, currently available semiconductor optical amplifiers, but at potentially higher data communication rates. This material consists of thin crystalline layers whose optical properties were specially designed for the optical circuits found on chips. The researchers can fine-tune the properties of these thin crystalline layers by changing their composition. Using a clever trick, they were able to embed much higher concentrations of optically active Ytterbium ions (Ytterbium is a rare-earth element) in the crystal. In this way, they have boosted the optical amplification of currently available rare-earth-doped materials by more than one hundredfold. This will ultimately pave the way for faster and cheaper optical data communication.

PhD research
Dimitri Geskus carried out his PhD research at the MESA+ research institute's Integrated Optical Microsystems department. His work was supervised by Prof. Markus Pollnau. The research was partially funded by Prof. Pollnau's personal VICI grant from the Dutch Organization for Scientific Research (NWO).
Details of this work, drawn from Mr Geskus' dissertation, were recently published in the leading scientific journal Advanced Materials.

####

For more information, please click here

Contacts:
Science Information Officer
Joost Bruysters
(+31-(0)53-4892773/+31-(0)6 1048 8228)

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Chip Technology

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Building a better semiconductor: Research led by Michigan State University could someday lead to the development of new and improved semiconductors June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Optical computing/ Photonic computing

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Iranian Researchers Model, Design Optical Switches June 13th, 2015

Rice researchers make ultrasensitive conductivity measurements: Photonic platform could provide 'optical signatures' for molecular electronics June 10th, 2015

Investigation of Optical Properties of Quantum Dots in Presence of Magnetic, Electrical Fields June 10th, 2015

Discoveries

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Announcements

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Photonics/Optics/Lasers

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

Laser spectroscopy: A novel microscope for nanosystems June 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project