Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers watch a next-gen memory bit switch in real time

Abstract:
For the first time, engineering researchers have been able to watch in real time the nanoscale process of a ferroelectric memory bit switching between the 0 and 1 states.

Researchers watch a next-gen memory bit switch in real time

Ann Arbor, MI | Posted on November 17th, 2011

Ferroelectric materials have the potential to replace current memory designs, offering greater storage capacity than magnetic hard drives and faster write speed and longer lifetimes than flash memory. Replacing dynamic random access memory—the short-term memory that allows your computer to operate—with ferroelectric memory can significantly decrease energy usage in computers. Ferroelectric memory doesn't require power to retain data.

A paper on the research is published in the Nov. 18, 2011, edition of Science.

"This is a direct visualization of the operation of ferroelectric memory," said principal investigator Xiaoqing Pan, a professor in the Department of Materials Science and Engineering and director of the U-M Electron Microbeam Analysis Laboratory.

"By following ferroelectric switching at this scale in real time, we've been able to observe new and unexpected phenomena. This work will help us understand how these systems work so one can make better memory devices that are faster, smaller and more reliable."

The researchers were able to see that the switching process of ferroelectric memory begins at a different site in the material than they initially believed. And this switching can be sparked with a lot less power than they had hypothesized.

"In this system, electric fields are naturally formed at the ferroelectric/electrode interfaces and this lowers the barrier for switching—for free. That means you can write information with much lower power consumption," Pan said.

Pan is leading the development of special hybrid materials that contain both ferroelectric and magnetic components and could lead to next-generation magnetoelectric memory devices. This new study reports the behavior of one such material. An advantage of using these hybrid materials in memories is that they combine the advantages of both electric and magnetic memory classes: the ease of writing ferroelectric memory and the ease of reading magnetic memory. The interactions between ferroelectric and magnetic orders allow these hybrid materials to be integrated into other novel designs such as spintronics, which harness the intrinsic "up" or "down" spin of electrons.

Researchers from Cornell University, Penn State University, the University of Washington, the University of Wisconsin and Peking University also contributed to the work. The paper is called "Domain Dynamics during Ferroelectric Switching." The research is funded by the U.S. Department of Energy and the National Science Foundation.

Ferroelectrics, discovered about 90 years ago, are characterized by a spontaneous electric polarization that can be reoriented between different orientations by an applied electric field. This ability to form and manipulate the regions (domains) with different polarization orientations at the nanometer scale is key to the utility of ferroelectric materials for devices such as nonvolatile memories. The ferroelectric switching occurs through the nucleation and growth of favorably oriented domains and is strongly influenced by defects and interfaces with electrical contacts in devices. It is critical for memory devices to understand how the ferroelectric domain forms, grows and interacts with defects and interfaces.

####

About University of Michigan
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $180 million annually, its engineering research budget is one of the largest of any public university. Michigan Engineering is home to 11 academic departments, numerous research centers and expansive entrepreneurial programs. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world-class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

For more information, please click here

Contacts:
Nicole Casal Moore

734-647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Xiaoqing Pan:

U-M College of Engineering:

Related News Press

News and information

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Chip Technology

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX® to Extend Its FD-SOI Platform and Technology Leadership : GF’s FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Memory Technology

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Leti Breakthroughs Point Way to Significant Improvements in SoC Memories December 6th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Discoveries

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Announcements

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project