Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers watch a next-gen memory bit switch in real time

Abstract:
For the first time, engineering researchers have been able to watch in real time the nanoscale process of a ferroelectric memory bit switching between the 0 and 1 states.

Researchers watch a next-gen memory bit switch in real time

Ann Arbor, MI | Posted on November 17th, 2011

Ferroelectric materials have the potential to replace current memory designs, offering greater storage capacity than magnetic hard drives and faster write speed and longer lifetimes than flash memory. Replacing dynamic random access memory—the short-term memory that allows your computer to operate—with ferroelectric memory can significantly decrease energy usage in computers. Ferroelectric memory doesn't require power to retain data.

A paper on the research is published in the Nov. 18, 2011, edition of Science.

"This is a direct visualization of the operation of ferroelectric memory," said principal investigator Xiaoqing Pan, a professor in the Department of Materials Science and Engineering and director of the U-M Electron Microbeam Analysis Laboratory.

"By following ferroelectric switching at this scale in real time, we've been able to observe new and unexpected phenomena. This work will help us understand how these systems work so one can make better memory devices that are faster, smaller and more reliable."

The researchers were able to see that the switching process of ferroelectric memory begins at a different site in the material than they initially believed. And this switching can be sparked with a lot less power than they had hypothesized.

"In this system, electric fields are naturally formed at the ferroelectric/electrode interfaces and this lowers the barrier for switching—for free. That means you can write information with much lower power consumption," Pan said.

Pan is leading the development of special hybrid materials that contain both ferroelectric and magnetic components and could lead to next-generation magnetoelectric memory devices. This new study reports the behavior of one such material. An advantage of using these hybrid materials in memories is that they combine the advantages of both electric and magnetic memory classes: the ease of writing ferroelectric memory and the ease of reading magnetic memory. The interactions between ferroelectric and magnetic orders allow these hybrid materials to be integrated into other novel designs such as spintronics, which harness the intrinsic "up" or "down" spin of electrons.

Researchers from Cornell University, Penn State University, the University of Washington, the University of Wisconsin and Peking University also contributed to the work. The paper is called "Domain Dynamics during Ferroelectric Switching." The research is funded by the U.S. Department of Energy and the National Science Foundation.

Ferroelectrics, discovered about 90 years ago, are characterized by a spontaneous electric polarization that can be reoriented between different orientations by an applied electric field. This ability to form and manipulate the regions (domains) with different polarization orientations at the nanometer scale is key to the utility of ferroelectric materials for devices such as nonvolatile memories. The ferroelectric switching occurs through the nucleation and growth of favorably oriented domains and is strongly influenced by defects and interfaces with electrical contacts in devices. It is critical for memory devices to understand how the ferroelectric domain forms, grows and interacts with defects and interfaces.

####

About University of Michigan
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $180 million annually, its engineering research budget is one of the largest of any public university. Michigan Engineering is home to 11 academic departments, numerous research centers and expansive entrepreneurial programs. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world-class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

For more information, please click here

Contacts:
Nicole Casal Moore

734-647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Xiaoqing Pan:

U-M College of Engineering:

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Chip Technology

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

GLOBALFOUNDRIES Demonstrates Industry-Leading 112G Technology for Next-Generation Connectivity Solutions: High bandwidth, low power SerDes IP portfolio enables ‘connected intelligence’ in data centers and networking applications November 15th, 2017

Nanometrics Announces $50 Million Share Repurchase Program November 15th, 2017

Memory Technology

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Fast magnetic writing of data September 7th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project