Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Inhaled Nanoparticles Deliver Potent Anticancer Cocktail to Lung Tumors and Block Resistance

Abstract:
An ideal treatment for lung cancer would be one that could be inhaled deep into lung tissue where it would deliver tumor-killing agents that would then largely stay in the lungs, avoiding the toxicities that limit the effectiveness of today's lung cancer therapies. Now, researchers at Rutgers, The State University of New Jersey, have developed an inhalable porous silica nanoparticle that not only delivers potent anticancer drugs only to non-small cell lung tumors, but also delivers agents that prevent the development of drug resistance.

Inhaled Nanoparticles Deliver Potent Anticancer Cocktail to Lung Tumors and Block Resistance

Bethesda, MD | Posted on November 17th, 2011

Reporting its work in the Journal of Drug Targeting, a research team headed by Tamara Minko showed that a targeted silica nanoparticle was effective at getting a cocktail of drugs into lung tumors in animals and triggering cancer cell death. The inhaled nanoparticles largely remaining in the lungs, with a small amount accumulating in the liver and kidneys, the organs that are typically involved in excreting nanoparticles and other administered compounds.

Minko and her colleagues began this project by first developing mesoporous silica nanoparticles that could effectively deliver a mixture of traditional anticancer drugs and siRNA molecules specifically to lung cancer cells. The investigators chose mesoporous silica nanoparticles for two reasons - their pore size makes them ideal for delivering large loads of different types of molecules and they are biocompatible.

The researchers chose the anticancer agents doxorubicin and cisplatin, used today to treat lung cancer, as the primary tumor killing agents. They then designed two siRNA molecules to stop the development of drug resistance that develops during conventional anticancer treatment. One siRNA molecule would block tumor cell production of a drug pump that they use to expel anticancer agents, while the other siRNA would limit production of a protein that tumor cells use to prevent the programmed cell death, or apoptosis, that doxorubicin and cisplatin normally triggers.

To target the nanoparticles to lung tumors, the researchers added a molecule known as LHRH to the surface of the nanoparticle. LHRH binds to a receptor that is produced at high levels by many types of cancers, including lung cancers.

Tests with non-small cell lung tumor cells demonstrated that this complex formulation was highly effective at killing the cells and preventing the expression of the two types of drug resistance responses normally seen. Tests in animals showed that nearly three quarters of the inhaled nanoparticles remained in the lungs and were taken up by tumor cells. In this study, the researchers did not measure efficacy in killing tumors in the animals.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA."

Related News Press

News and information

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Nanomedicine

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia March 11th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

Computer-designed vaccine elicits potent antibodies against RSV: The nanoparticle platform for this respiratory syncytial virus study will be applied to vaccine research on flu, HIV, and more; Seattle startup Icosavax will advance related clinical trials March 8th, 2019

CEA-Leti Breakthrough Opens Path to New Vaccine for HIV: Lipidots Platform Strengthens Immune Response to Protein That Is Key to HIV Vaccine; Results Presented in Nature Publishing Group’s npj Vaccines February 27th, 2019

Discoveries

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Announcements

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project