Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanobotmodels present visualization nanoparticle cancer treatment - Nanoparticle cancer treatment: This nanoparticles has the potential to improve upon photothermal tumor ablation for cancer therapy.

Abstract:
Cancer affects about seven million people worldwide, and that number is projected to grow to 15 million by 2020. Most of those patients are treated with chemotherapy and/or radiation, which are often effective but can have debilitating side effects because it's difficult to target tumor tissue.

Nanobotmodels present visualization nanoparticle cancer treatment - Nanoparticle cancer treatment: This nanoparticles has the potential to improve upon photothermal tumor ablation for cancer therapy.

Melitopol, Ukraine | Posted on November 11th, 2011

Nanotechnology, an interdisciplinary research field involving chemistry, engineering, biology, and medicine, has great potential for early detection, accurate diagnosis, and personalized treatment of cancer. Nanoparticles are typically smaller than several hundred nanometers in size, comparable to large biological molecules such as enzymes, receptors, and antibodies. With the size of about one hundred to ten thousand times smaller than human cells, these nanoparticles can offer unprecedented interactions with biomolecules both on the surface of and inside the cells, which may revolutionize cancer diagnosis and treatment.

The development and optimization of near-infrared-absorbing nanoparticles for use as photothermal cancer therapeutic agents has been ongoing. Nanoparticles (35-55nm) provide higher absorption (98% absorption and 2% scattering for gold nanoshells) as well as potentially better tumor penetration. The ability to ablate tumor cells in vitro and efficacy for photothermal cancer therapy clinically tested, and an in vivo model shows significantly increased long-term, tumor-free survival. This nanoparticles has the potential to improve upon photothermal tumor ablation for cancer therapy.

One heat therapy to destroy cancer tumors using nanoparticles is called AuroShell™. The AuroShell™ nanoparticles circulate through a patients bloodstream, exiting where the blood vessels are leaking at the site of cancer tumors. Once the nanoparticles accumulate at the tumor the AuroShell™ nanoparticles are used to concentrate the heat from infrared light to destroy cancer cells with minimal damage to surrounding healthy cells. Nanobotmodels company provides good visual illustration of this process. Nanospectra Biosciences has developed such a treatment using AuroShell™ that has been approved for a pilot trial with human patients.

Gold nanoparticles can absorb different frequencies of light, depending on their shape. Rod-shaped particles absorb light at near-infrared frequency; this light heats the rods but passes harmlessly through human tissue. Sphere-shaped nanoparticles absorb laser radiation and passes harmlessly through human tissue too.

Nanobotmodels Company provides visual illustration of nanoparticle cancer treatment. Our goal - make realistic vision of modern drug delivery technology.

####

About Nanobotmodels
Our company Nanobotmodels was founded in 2007 and it goal is develop modern art-science-technology intersections. Nanotechnology boost medicine, engineering, biotechnology, electronics soon, so artwork and vision of the nanofuture will be very useful.

We are making hi-end nanotechnology and nanomedicine illustration and animation. You can imagine any interesting to you animation, illustration or presentation materials, and we can make real.

The level of detail in each medical illustration can be used to simplify complex structures and make them visual attractive.

Our clients include largest medicine photobanks, nanotechnology magazines and publications, educational organization, private companies.

Company founded by CEO Svidinenko Yuriy, futurist and nanotechnology artist.

Our team consist of modern artists, modelers and nanotechnology scientists.

Company office located in Ukraine, Melitopol.

For more information, please click here

Contacts:
Contact phones:
Mobile: +38 (096) 470 41 66
Tel/Fax: +38 (0619) 44 00 03
E-Mail:
common questions: info(at)nanobotmodels.com
sales and image permissions: sales(at)nanobotmodels.com

Copyright © Nanobotmodels

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Nanomedicine

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Announcements

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project