Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Switching light on and off -- with just a few photons at a time

Gaeta Group
Rubidium atoms will absorb photons only if two photons of specific wavelengths arrive at the same time. This allows one stream of photons to turn another on or off.
Gaeta Group

Rubidium atoms will absorb photons only if two photons of specific wavelengths arrive at the same time. This allows one stream of photons to turn another on or off.

Abstract:
Cornell researchers have demonstrated that the passage of a light beam through an optical fiber can be controlled by just a few photons of another light beam.

Switching light on and off -- with just a few photons at a time

Ithaca, NY | Posted on November 9th, 2011

Such all-optical control is the idea behind photonics, where beams of light replace electric currents in circuits, yielding higher speed and lower power consumption. Just as a transistor can switch an electric current on or off, photonic circuits need a way for one light beam to switch another. One of the holy grails is single-photon switching, where just one photon controls the passage of another.

Researchers in the Quantum and Nonlinear Optics group of Alexander Gaeta, professor of applied and engineering physics, have come close to that goal. They report their new approach in the Nov. 4 issue of the journal Physical Review Letters.

Light consists of small packets of energy called photons. Under the right conditions, a photon can be absorbed by an atom. Gaeta's group exploited the unusual property of the element rubidium, which can absorb photons only if two photons of certain wavelengths arrive at the same time. They filled a hollow-core optical fiber with rubidium vapor and fired a continuous infrared light signal at a wavelength of 776 nanometers (nm) in one end and an intermittent "control" signal at 780.2 nm in the other.

In the narrow tube, light interacts strongly with the rubidium atoms. When the control beam is on, rubidium atoms absorb both wavelengths, and the signal is cut off; when the control is off the signal passes through.

The effect is observed with less than 20 control photons at timescales as fast as five-billionths of a second, allowing modulation at frequencies up to 50MHz, the researchers said, referring to the rate of transmission of on and off pulses of light representing digital ones and zeroes in fiber-optic communication. The technique also may have applications in quantum computing, where single photons can act as "qubits," the quantum equivalent of ones and zeroes.

The research was funded by the National Science Foundation and the Defense Advanced Research Projects Agency.

==

Graduate student Vivek Venkataraman is a writer intern for the Cornell Chronicle.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Bill Steele
(607) 255-7164


Vivek Venkataraman

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Perfect diamagnetism observation of high-temperature superconductivity in compressed H2S June 14th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Optical computing/Photonic computing

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies May 31st, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Discoveries

Perfect diamagnetism observation of high-temperature superconductivity in compressed H2S June 14th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Announcements

Perfect diamagnetism observation of high-temperature superconductivity in compressed H2S June 14th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Photonics/Optics/Lasers

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Chemists build a better cancer-killing drill: Rice U.-designed molecular motors get an upgrade for activation with near-infrared light May 29th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project