Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Switching light on and off -- with just a few photons at a time

Gaeta Group
Rubidium atoms will absorb photons only if two photons of specific wavelengths arrive at the same time. This allows one stream of photons to turn another on or off.
Gaeta Group

Rubidium atoms will absorb photons only if two photons of specific wavelengths arrive at the same time. This allows one stream of photons to turn another on or off.

Abstract:
Cornell researchers have demonstrated that the passage of a light beam through an optical fiber can be controlled by just a few photons of another light beam.

Switching light on and off -- with just a few photons at a time

Ithaca, NY | Posted on November 9th, 2011

Such all-optical control is the idea behind photonics, where beams of light replace electric currents in circuits, yielding higher speed and lower power consumption. Just as a transistor can switch an electric current on or off, photonic circuits need a way for one light beam to switch another. One of the holy grails is single-photon switching, where just one photon controls the passage of another.

Researchers in the Quantum and Nonlinear Optics group of Alexander Gaeta, professor of applied and engineering physics, have come close to that goal. They report their new approach in the Nov. 4 issue of the journal Physical Review Letters.

Light consists of small packets of energy called photons. Under the right conditions, a photon can be absorbed by an atom. Gaeta's group exploited the unusual property of the element rubidium, which can absorb photons only if two photons of certain wavelengths arrive at the same time. They filled a hollow-core optical fiber with rubidium vapor and fired a continuous infrared light signal at a wavelength of 776 nanometers (nm) in one end and an intermittent "control" signal at 780.2 nm in the other.

In the narrow tube, light interacts strongly with the rubidium atoms. When the control beam is on, rubidium atoms absorb both wavelengths, and the signal is cut off; when the control is off the signal passes through.

The effect is observed with less than 20 control photons at timescales as fast as five-billionths of a second, allowing modulation at frequencies up to 50MHz, the researchers said, referring to the rate of transmission of on and off pulses of light representing digital ones and zeroes in fiber-optic communication. The technique also may have applications in quantum computing, where single photons can act as "qubits," the quantum equivalent of ones and zeroes.

The research was funded by the National Science Foundation and the Defense Advanced Research Projects Agency.

==

Graduate student Vivek Venkataraman is a writer intern for the Cornell Chronicle.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Bill Steele
(607) 255-7164


Vivek Venkataraman

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Optical computing/ Photonic computing

Computing at the speed of light: Utah engineers take big step toward much faster computers May 18th, 2015

Electrons corralled using new quantum tool: 'Whispering gallery' effect confines electrons, could provide basis for new electron-optics devices May 7th, 2015

Putting a new spin on plasmonics: Researchers at Aalto University have discovered a novel way of combining plasmonic and magneto-optical effects May 7th, 2015

Rice scientists use light to probe acoustic tuning in gold nanodisks: Rice University experts demonstrate new method for optomechanical tuning May 7th, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Photonics/Optics/Lasers

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Computing at the speed of light: Utah engineers take big step toward much faster computers May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project