Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > How do green algae react to carbon nanotubes? Nanotubes «rob» green algae of space and light

Carbon nanotubes are not poisonous to green algae, but they do slow the growth of these organisms at high concentrations because they cause clumping which leads to the algae receiving less light. Left: intact algae (green) in a clump of carbon nanotubes (black). Right: "normal" photosynthetic activity of the algae (red) made visible by fluorescence.
Carbon nanotubes are not poisonous to green algae, but they do slow the growth of these organisms at high concentrations because they cause clumping which leads to the algae receiving less light. Left: intact algae (green) in a clump of carbon nanotubes (black). Right: "normal" photosynthetic activity of the algae (red) made visible by fluorescence.

Abstract:
Nanoparticles such as carbon nanotubes (CNT), which are found in an ever-increasing number of products, are ending up more and more frequently in our surroundings. If and how they affect aquatic ecosystems are questions which are still unanswered. An Empa study shows that while CNTs do not have toxic effects on green algae they do inhibit its growth by depriving the plant of light and space.

How do green algae react to carbon nanotubes? Nanotubes «rob» green algae of space and light

Switzerland | Posted on November 4th, 2011

Carbon nanotubes (CNTs) are up to 100,000 times thinner than a human hair and as light as plastic. Despite this they have a higher tensile strength than steel, are harder than diamond and conduct electricity better than copper. These properties make CNTs a raw material with a very promising future. All over the world possible applications are being investigated, including use in solar cells, plastics, batteries, medical technology and the purification of drinking water.

With the increasing industrial production of CNTs now reaching the level of hundreds of tons per year, the quantity of these particles which could be released into the environment has also risen. Certain studies have raised the possibility that CNTs lodged in the lungs might cause similar health effects as do asbestos fibers. An interdisciplinary team of scientists from Empa and the Agroscope Reckenholz-Taenikon (ART) Research Station have now begun investigating the fundamentals of how CNTs behave when they are deposited in waterways and lakes.

Algae remain healthy but grow slower
In the course of the project, which is financed by the Swiss National Funds, researchers further developed a standard chemical method in order to measure the growth and photosynthetic activity of green algae exposed to CNTs. They discovered that even in the presence of high concentrations of CNTs the algae retain normal levels of photosynthesis, although growth rates are reduced. Also noticeable was that when CNTs are added to the algae suspension, its color darkens and the algae forms clumps with the nanotubes. Despite this there is no evidence that the nanotubes are absorbed by the plants.

The investigators came to the conclusion, therefore, that the algae grow more slowly because they stick together as a result of the presence of CNTs and therefore receive less light. To prove this, they developed two further tests which allowed them to measure quantitatively the shadowing and agglomeration effects the nanotubes had on the algae. The results show that the slower growth of the organisms is in actual fact primarily due to these two factors. The conclusion is therefore that CNTs are not directly toxic to green algae, as earlier studies indicated. In the presence of CNTs, algae simply do not enjoy ideal growth conditions because, like land plants, they need sufficient room and light to do so.The clumping and shadowing effects which were observed only manifest themselves at elevated CNT concentrations of more than one milligram per liter, however. These levels of carbon nanotubes concentrations are currently unlikely to be met in the environment.

«Our study shows how difficult is to understand in detail the effect of nanomaterials on organisms», says Empa and ART researcher Fabienne Schwab. The results will help to test other nanoparticles to ensure that the safety of humans and their environment is guaranteed. Empa researcher Bernd Nowack advises that until comprehensive, long term results are available for complex organisms such as green algae, nanoparticles (particularly unbound nanoparticles) should not be released into our environment.

####

For more information, please click here

Contacts:
Further information

Dr. Bernd Nowack
Empa, Technology and Society Laboratory
Tel. +41 58 765 76 92


Fabienne Schwab
Agroscope ART
Tel. +41 44 377 7197


Editor/Media Contact

Rémy Nideröst
Empa, Communication Dept.
Tel. +41 58 765 45 98

Copyright © Empa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Discoveries

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Announcements

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Environment

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell August 28th, 2017

A more complete picture of the nano world August 24th, 2017

Safety-Nanoparticles/Risk management

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project