Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > How do green algae react to carbon nanotubes? Nanotubes «rob» green algae of space and light

Carbon nanotubes are not poisonous to green algae, but they do slow the growth of these organisms at high concentrations because they cause clumping which leads to the algae receiving less light. Left: intact algae (green) in a clump of carbon nanotubes (black). Right: "normal" photosynthetic activity of the algae (red) made visible by fluorescence.
Carbon nanotubes are not poisonous to green algae, but they do slow the growth of these organisms at high concentrations because they cause clumping which leads to the algae receiving less light. Left: intact algae (green) in a clump of carbon nanotubes (black). Right: "normal" photosynthetic activity of the algae (red) made visible by fluorescence.

Abstract:
Nanoparticles such as carbon nanotubes (CNT), which are found in an ever-increasing number of products, are ending up more and more frequently in our surroundings. If and how they affect aquatic ecosystems are questions which are still unanswered. An Empa study shows that while CNTs do not have toxic effects on green algae they do inhibit its growth by depriving the plant of light and space.

How do green algae react to carbon nanotubes? Nanotubes «rob» green algae of space and light

Switzerland | Posted on November 4th, 2011

Carbon nanotubes (CNTs) are up to 100,000 times thinner than a human hair and as light as plastic. Despite this they have a higher tensile strength than steel, are harder than diamond and conduct electricity better than copper. These properties make CNTs a raw material with a very promising future. All over the world possible applications are being investigated, including use in solar cells, plastics, batteries, medical technology and the purification of drinking water.

With the increasing industrial production of CNTs now reaching the level of hundreds of tons per year, the quantity of these particles which could be released into the environment has also risen. Certain studies have raised the possibility that CNTs lodged in the lungs might cause similar health effects as do asbestos fibers. An interdisciplinary team of scientists from Empa and the Agroscope Reckenholz-Taenikon (ART) Research Station have now begun investigating the fundamentals of how CNTs behave when they are deposited in waterways and lakes.

Algae remain healthy but grow slower
In the course of the project, which is financed by the Swiss National Funds, researchers further developed a standard chemical method in order to measure the growth and photosynthetic activity of green algae exposed to CNTs. They discovered that even in the presence of high concentrations of CNTs the algae retain normal levels of photosynthesis, although growth rates are reduced. Also noticeable was that when CNTs are added to the algae suspension, its color darkens and the algae forms clumps with the nanotubes. Despite this there is no evidence that the nanotubes are absorbed by the plants.

The investigators came to the conclusion, therefore, that the algae grow more slowly because they stick together as a result of the presence of CNTs and therefore receive less light. To prove this, they developed two further tests which allowed them to measure quantitatively the shadowing and agglomeration effects the nanotubes had on the algae. The results show that the slower growth of the organisms is in actual fact primarily due to these two factors. The conclusion is therefore that CNTs are not directly toxic to green algae, as earlier studies indicated. In the presence of CNTs, algae simply do not enjoy ideal growth conditions because, like land plants, they need sufficient room and light to do so.The clumping and shadowing effects which were observed only manifest themselves at elevated CNT concentrations of more than one milligram per liter, however. These levels of carbon nanotubes concentrations are currently unlikely to be met in the environment.

«Our study shows how difficult is to understand in detail the effect of nanomaterials on organisms», says Empa and ART researcher Fabienne Schwab. The results will help to test other nanoparticles to ensure that the safety of humans and their environment is guaranteed. Empa researcher Bernd Nowack advises that until comprehensive, long term results are available for complex organisms such as green algae, nanoparticles (particularly unbound nanoparticles) should not be released into our environment.

####

For more information, please click here

Contacts:
Further information

Dr. Bernd Nowack
Empa, Technology and Society Laboratory
Tel. +41 58 765 76 92


Fabienne Schwab
Agroscope ART
Tel. +41 44 377 7197


Editor/Media Contact

Rémy Nideröst
Empa, Communication Dept.
Tel. +41 58 765 45 98

Copyright © Empa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Discoveries

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Environment

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Safety-Nanoparticles/Risk management

How harmful are nano-copper and anti-fungal combinations in the waterways? October 27th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project