Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Chemically assembled metamaterials could lead to superlenses and cloaking

Wiesner Lab
Two polymer molecules linked together will self-assemble into a complex shape, in this case a convoluted "gyroid." One of the polymers is chemically removed, leaving a mold that can be filled with metal. Finally the other polymer is removed, leaving a metal gyroid with features measured in nanometers.
Wiesner Lab

Two polymer molecules linked together will self-assemble into a complex shape, in this case a convoluted "gyroid." One of the polymers is chemically removed, leaving a mold that can be filled with metal. Finally the other polymer is removed, leaving a metal gyroid with features measured in nanometers.

Abstract:
Nanomanufacturing technology has enabled scientists to create metamaterials -- stuff that never existed in nature -- with unusual optical properties. They could lead to "superlenses" able to image proteins, viruses and DNA, and perhaps even make a "Star Trek" cloaking device.

Chemically assembled metamaterials could lead to superlenses and cloaking

Ithaca, NY | Posted on November 1st, 2011

Other metamaterials offer unique magnetic properties that could have applications in microelectronics or data storage.

The limitation, so far, is that techniques like electron-beam lithography or atomic sputtering can only create these materials in thin layers. Now Cornell researchers propose an approach from chemistry to self-assemble metamaterials in three dimensions.

Uli Wiesner, the Spencer T. Olin Professor of Engineering, and colleagues present their idea in the online edition of the journal Angewandte Chemie.

Wiesner's research group offers a method they have pioneered in other fields, using block copolymers to self-assemble 3-D structures with nanoscale features.

A polymer is made up of molecules that chain together to form a solid or semisolid material. A block copolymer is made by joining two polymer molecules at the ends so that when each end chains up with others like itself, the two solids form an interconnected pattern of repeating geometric shapes -- planes, spheres, cylinders or a twisty network called a gyroid. Elements of the repeating pattern can be as small as a few nanometers across. Sometimes tri-polymers can be used to create even more complex shapes.

After the structure has formed, one of the two polymers can be dissolved away, leaving a 3-D mold that can be filled with a metal -- often gold or silver. Then the second polymer is burned away, leaving a porous metal structure.

In their paper the researchers propose to create metal gyroids that allow light to pass through, but are made up of nanoscale features that interact with light, just as the atoms in glass or plastic do. In this way, they say, it should be possible to design materials with a negative index of refraction, that is, materials that bend light in the opposite direction than in an ordinary transparent material.

Special lenses made of such a material could image objects smaller than the wavelength of visible light, including proteins, viruses and DNA. Some experimenters have made such superlenses, but so far none that work in the visible light range. Negative refraction materials might also be configured to bend light around an object -- at least a small one -- and make it invisible.

The Cornell researchers created computer simulations of several different metal gyroids that could be made by copolymer self-assembly, then calculated how light would behave when passing through these materials. They concluded that such materials could have a negative refractive index in the visible and near-infrared range. They noted that the amount of refraction could be controlled by adjusting the size of the repeating features of the metamaterial, which can be done by modifying the chemistry used in self-assembly.

They tried their calculations assuming the metal structures might be made of gold, silver or aluminum, and found that only silver produced satisfactory results.

Could these materials actually be made? According to graduate student Kahyun Hur, lead author on the paper, "We're working on it."

Hur's research is supported by the King Abdullah University of Science and Technology. Other aspects of the work have been funded by the National Science Foundation and the Computational Center for Nanotechnology Innovation at Rensselaer Polytechnic Institute.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Bill Steele

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Imaging

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Sustainable nanotechnology center September 1st, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Chip Technology

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Memory Technology

New material science research may advance tech tools August 31st, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Superlattice design realizes elusive multiferroic properties: New design sandwiches a polar metallic oxide between an insulating material August 23rd, 2015

High-precision control of nanoparticles for digital applications August 19th, 2015

Self Assembly

Using DNA origami to build nanodevices of the future September 1st, 2015

Louisiana Tech University researchers discover synthesis of a new nanomaterial: Interdisciplinary team creates biocomposite for first time using physiological conditions August 24th, 2015

Novel nanostructures for efficient long-range energy transport August 21st, 2015

Biophysics: Formation of swarms in nanosystems August 18th, 2015

Discoveries

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

New material science research may advance tech tools August 31st, 2015

Materials/Metamaterials

Sustainable nanotechnology center September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Announcements

Waste coffee used as fuel storage: Scientists have developed a simple process to treat waste coffee grounds to allow them to store methane September 2nd, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Military

Seeing quantum motion August 30th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Printing/Lithography/Inkjet/Inks

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

New research may enhance display & LED lighting technology: Large-area integration of quantum dots and photonic crystals produce brighter and more efficient light August 9th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

2015 Bulk Graphene Pricing Webinar:The Graphene Council to Host Webinar in Collaboration with Fullerex July 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic