Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Chemically assembled metamaterials could lead to superlenses and cloaking

Wiesner Lab
Two polymer molecules linked together will self-assemble into a complex shape, in this case a convoluted "gyroid." One of the polymers is chemically removed, leaving a mold that can be filled with metal. Finally the other polymer is removed, leaving a metal gyroid with features measured in nanometers.
Wiesner Lab

Two polymer molecules linked together will self-assemble into a complex shape, in this case a convoluted "gyroid." One of the polymers is chemically removed, leaving a mold that can be filled with metal. Finally the other polymer is removed, leaving a metal gyroid with features measured in nanometers.

Abstract:
Nanomanufacturing technology has enabled scientists to create metamaterials -- stuff that never existed in nature -- with unusual optical properties. They could lead to "superlenses" able to image proteins, viruses and DNA, and perhaps even make a "Star Trek" cloaking device.

Chemically assembled metamaterials could lead to superlenses and cloaking

Ithaca, NY | Posted on November 1st, 2011

Other metamaterials offer unique magnetic properties that could have applications in microelectronics or data storage.

The limitation, so far, is that techniques like electron-beam lithography or atomic sputtering can only create these materials in thin layers. Now Cornell researchers propose an approach from chemistry to self-assemble metamaterials in three dimensions.

Uli Wiesner, the Spencer T. Olin Professor of Engineering, and colleagues present their idea in the online edition of the journal Angewandte Chemie.

Wiesner's research group offers a method they have pioneered in other fields, using block copolymers to self-assemble 3-D structures with nanoscale features.

A polymer is made up of molecules that chain together to form a solid or semisolid material. A block copolymer is made by joining two polymer molecules at the ends so that when each end chains up with others like itself, the two solids form an interconnected pattern of repeating geometric shapes -- planes, spheres, cylinders or a twisty network called a gyroid. Elements of the repeating pattern can be as small as a few nanometers across. Sometimes tri-polymers can be used to create even more complex shapes.

After the structure has formed, one of the two polymers can be dissolved away, leaving a 3-D mold that can be filled with a metal -- often gold or silver. Then the second polymer is burned away, leaving a porous metal structure.

In their paper the researchers propose to create metal gyroids that allow light to pass through, but are made up of nanoscale features that interact with light, just as the atoms in glass or plastic do. In this way, they say, it should be possible to design materials with a negative index of refraction, that is, materials that bend light in the opposite direction than in an ordinary transparent material.

Special lenses made of such a material could image objects smaller than the wavelength of visible light, including proteins, viruses and DNA. Some experimenters have made such superlenses, but so far none that work in the visible light range. Negative refraction materials might also be configured to bend light around an object -- at least a small one -- and make it invisible.

The Cornell researchers created computer simulations of several different metal gyroids that could be made by copolymer self-assembly, then calculated how light would behave when passing through these materials. They concluded that such materials could have a negative refractive index in the visible and near-infrared range. They noted that the amount of refraction could be controlled by adjusting the size of the repeating features of the metamaterial, which can be done by modifying the chemistry used in self-assembly.

They tried their calculations assuming the metal structures might be made of gold, silver or aluminum, and found that only silver produced satisfactory results.

Could these materials actually be made? According to graduate student Kahyun Hur, lead author on the paper, "We're working on it."

Hur's research is supported by the King Abdullah University of Science and Technology. Other aspects of the work have been funded by the National Science Foundation and the Computational Center for Nanotechnology Innovation at Rensselaer Polytechnic Institute.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Bill Steele

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Imaging

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Govt.-Legislation/Regulation/Funding/Policy

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Chip Technology

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Pushing Past Limits: Junkai Jiang receives prestigious Ph.D. Student Fellowship from IEEE Electron Devices Society March 14th, 2019

Nanometrics Announces $80 Million Share Repurchase Program March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Memory Technology

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Self Assembly

Can a flowing liquid-like material maintain its structural order like crystals? February 27th, 2019

Self-assembling nanomaterial offers pathway to more efficient, affordable harnessing of solar power: The new materials produce a singlet fission reaction that creates more and extends the life of harvestable electronic charges January 24th, 2019

Light up logic: Engineers from UTokyo and RIKEN perform computational logic with light January 18th, 2019

High-performance self-assembled catalyst for SOFC October 12th, 2018

Discoveries

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Materials/Metamaterials

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Now made in Japan – Asian battery manufacturers welcome highly conductive nanotube additive March 7th, 2019

Can a flowing liquid-like material maintain its structural order like crystals? February 27th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Announcements

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Military

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Printing/Lithography/Inkjet/Inks/Bio-printing

New composite advances lignin as a renewable 3D printing material December 28th, 2018

Nanoscribe Presents Successor Model Photonic Professional GT2 for High-Resolution 3D Microfabrication: The first ever production of structures in millimeter size with micrometer precision December 4th, 2018

CEA-Leti Extends 300mm Line and Adds Avenues for Developing Disruptive Technologies: Execution Relies on CEA-Leti’s Fully Implemented Technology With Module-Level Innovations & Devices and Their Architectures December 3rd, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project