Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > DNA origami: Researchers fabricate DNA strands on a reusable chip, fold them into novel nanostructures

Abstract:
In the emerging field of synthetic biology, engineers use biological building blocks, such as snippets of DNA, to construct novel technologies. One of the key challenges in the field is finding a way to quickly and economically synthesize the desired DNA strands. Now scientists from Duke University have fabricated a reusable DNA chip that may help address this problem by acting as a template from which multiple batches of DNA building blocks can be photocopied. The researchers have used the device to create strands of DNA which they then folded into unique nanoscale structures. They will present their findings at the AVS Symposium, held Oct. 30 - Nov. 4, in Nashville, Tennessee.

DNA origami: Researchers fabricate DNA strands on a reusable chip, fold them into novel nanostructures

College Park, MD | Posted on November 1st, 2011

Many different methods of DNA synthesis have been developed, but each method has its drawbacks. Bulk DNA synthesis, which makes use of separate columns to house the reactions, can produce large amounts of material, but is costly and limited in the number of different DNA sequences it can create. The Duke researchers, by contrast, used an inkjet printer head to deposit small droplets of chemicals on top of a plastic chip, gradually constructing DNA strands of mixed length and composition on the surface. The team then used a biological photocopying process to harvest the DNA from the chip. To the researchers' surprise, they found they could reuse the chip to harvest multiple batches of DNA. "We found that we had an "immortal" DNA chip in our hands," says Ishtiaq Saaem, a biomedical engineering researcher at Duke and member of the team. "Essentially, we were able to do the biological copying process to release material off the chip tens of times. The process seems to work even using a chip that we made, used, stored in -20C for a while, and brought out and used again."

After releasing the DNA from the chip, the team "cooked" it together with a piece of long viral DNA. "In the cooking process, the viral DNA is stapled into a desired shape by the smaller chip-derived DNA," explains Saaem. One of the team's first examples of DNA origami was a rectangle shape with a triangle attached on one side, which the researchers dubbed a "nano-house." The structure could be used to spatially orient organic and inorganic materials, serve as a scaffold for drug delivery, or act as a nanoscale ruler, Saaem says.

Going forward, the team intends to produce larger DNA structures, while also testing the limit of how often their chip can be reused. In the near-term, the research has applications in the spatial positioning of biomolecules, such as proteins, for research purposes. Long-term, it might even transform information technology: "I would not be surprised if this methodology is used to fabricate the next generation of microprocessors that can push Moore's law even further," Saaem says.

The AVS 58th International Symposium & Exhibition will be held Oct. 30 - Nov. 4 at the Nashville Convention Center.

Presentation BI-MoM10, "DNA Origami from Inkjet Synthesis Produced Strands," is at 11:20 a.m. on Monday, Oct. 31.

####

For more information, please click here

Contacts:
Catherine Meyers

301-209-3088

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Main meeting website:

Technical Program:

Related News Press

News and information

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Synthetic Biology

New tool could help reshape the limits of synthetic biology: The 'telomerator' reshapes synthetic yeast chromosome into more flexible, realistic form, redefining what geneticists can build November 3rd, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Smallest world record has 'endless possibilities' for bio-nanotechnology October 8th, 2014

Artificial Cells Act Like the Real Thing: Cell-like compartments produce proteins and communicate with one another, similar to natural biological systems August 18th, 2014

Discoveries

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

Announcements

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Events/Classes

Professional AFM Images with a Three Step Click SmartScan by Park Systems Revolutionizes Atomic Force Microscopy by Automatizing the Imaging Process November 24th, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Sustainable Nanotechnologies Project November 20th, 2014

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE