Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Quantum Computer Components 'Coalesce' to 'Converse'

[1] A single photon is produced by a quantum dot (QD). Simultaneously, a pair of photons is produced by a parametric down-conversion crystal (PDC). [2] One of the PDC photons—which has different characteristics than the QD photon—is routed into a cavity and filter, [3] rendering this PDC photon and the QD photon nearly identical.
Credit: Suplee, NIST
[1] A single photon is produced by a quantum dot (QD). Simultaneously, a pair of photons is produced by a parametric down-conversion crystal (PDC). [2] One of the PDC photons—which has different characteristics than the QD photon—is routed into a cavity and filter, [3] rendering this PDC photon and the QD photon nearly identical.

Credit: Suplee, NIST

Abstract:
If quantum computers are ever to be realized, they likely will be made of different types of parts that will need to share information with one another, just like the memory and logic circuits in today's computers do. However, prospects for achieving this kind of communication seemed distant—until now. A team of physicists working at the National Institute of Standards and Technology (NIST) has shown* for the first time how these parts might communicate effectively.

Quantum Computer Components 'Coalesce' to 'Converse'

Gaithersburg, MD | Posted on October 27th, 2011

The goal to develop quantum computers—a long-awaited type of computer that could solve otherwise intractable problems, such as breaking complex encryption codes—has inspired scientists the world over to invent new devices that could become the brains and memory of these machines. Many of these tiny devices use particles of light, or photons, to carry the bits of information that a quantum computer will use.

But while each of these pieces of hardware can do some jobs well, none are likely to accomplish all of the functions necessary to build a quantum computer. This implies that several different types of quantum devices will need to work together for the computer or network to function. The trouble is that these tiny devices frequently create photons of such different character that they cannot transfer the quantum bits of information between one another. Transmuting two vastly different photons into two similar ones would be a first step toward permitting quantum information components to communicate with one another over large distances, but until now this goal has remained elusive.

However, the team has demonstrated that it is possible to take photons from two disparate sources and render these particles partially indistinguishable. That photons can be made to "coalesce" and become indistinguishable without losing their essential quantum properties suggests in principle that they can connect various types of hardware devices into a single quantum information network. The team's achievement also demonstrates for the first time that a "hybrid" quantum computer might be assembled from different hardware types.

The team connected single photons from a "quantum dot," which could be useful in logic circuits, with a second single-photon source that uses "parametric down conversion," which might be used to connect different parts of the computer. These two sources typically produce photons that differ so dramatically in spectrum that they would be unusable in a quantum network. But with a deft choice of filters and other devices that alter the photons' spectral shapes and other properties, the team was able to make the photons virtually identical.

"We manipulate the photons to be as indistinguishable as possible in terms of spectra, location and polarization—the details you need to describe a photon. We attribute the remaining distinguishability to properties of the quantum dot," says Glenn Solomon, of NIST's Quantum Measurement Division. "No conceivable measurement can tell indistinguishable photons apart. The results prove in principle that a hybrid quantum network is possible and can be scaled up for use in a quantum network."

The research team includes scientists from the NIST/University of Maryland Joint Quantum Institute (JQI) and Georgetown University. The NSF Physics Frontier Center at JQI provided partial funding
*S.V. Polyakov, A. Muller, E.B. Flagg, A. Ling, N. Borjemscaia, E. Van Keuren, A. Migdall and G.S. Solomon. Coalescence of single photons from dissimilar single-photon sources. Physical Review Letters, 107, 157402 (2011), DOI: 10.1103/PhysRevLett.107.157402.

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Chad Boutin
301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Laboratories

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Unusual Electronic State Found in New Class of Unconventional Superconductors: Finding gives scientists a new group of materials to explore to unlock secrets of some materials' ability to carry current with no energy loss December 8th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Quantum Computing

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

Graphene layer reads optical information from nanodiamonds electronically: Possible read head for quantum computers December 1st, 2014

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Discoveries

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Quantum Dots/Rods

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

Photonics/Optics/Lasers

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

Research partnerships

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Unraveling the light of fireflies December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE