Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Three for the price of one mobile electrons multiplied in quantum dot films

Abstract:
Researchers of the Opto-electronic Materials section of TU Delft and Toyota Europe have demonstrated that several mobile electrons can be produced by the absorption of a single light particle in films of coupled quantum dots. These multiple electrons can be harvested in solar cells with increased efficiency. The researchers published their findings in the October issue of the scientific journal Nano Letters.

Three for the price of one mobile electrons multiplied in quantum dot films

The Netherlands | Posted on October 16th, 2011

A way to increase the efficiency of cheap solar cells is the use of semiconductor nanoparticles, also called quantum dots. In theory, the efficiency of these cells can be increased to 44%. This is due to an interesting effect that efficiently happens in these nanoparticles: carrier multiplication. In the current solar cells, an absorbed light particle can only excite one electron, while in a quantum dot solar cell a light particle can excite several electrons. Multiplying the number of electrons results in the enhancement of current in solar cells, increasing the overall power conversion efficiency.

Carrier Multiplication

Several years ago it was demonstrated that carrier multiplication is more efficient in quantum dots than in traditional semiconductors. As a result, these quantum dots are currently heavily investigated worldwide for use in solar cells. A problem with using carrier multiplication is that the produced charges live only a very short time (around 0.00000000005 s) before they collide with each other and disappear via a decay process known as Auger recombination. The main current challenge is to proof that it is still possible to do something useful with them.

Mobile charges

The researchers from Delft have now demonstrated that even this very short time is long enough to separate the multiple electrons from each other. They prepared films of quantum dots in which the electrons can move so efficiently between the quantum dots that they become free and mobile before the time it takes to disappear via Auger recombination. In these films up to 3.5 free electrons are created per absorbed light particle. In this way, these electrons do not only survive, they are able to move freely through the material to be available for collection in a solar cell.

####

For more information, please click here

Contacts:
C. S. Suchand Sandeep
researcher with the section Opto-electronic Materials
Faculty of Applied Sciences
TU Delft
Phone: +31 (0) 15 278 3460


Michiel Aerts
researcher with the section Opto-electronic Materials
Faculty of Applied Sciences
TU Delft
Phone: +31 (0) 15 278 3460


Sachin Kinge
Research & Development
Toyota Europe


InekeBoneschansker
science information officer
TU Delft
+31 (0) 15 278 8499

Copyright © TU Delft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the full article on the website of Nano Letters

Related News Press

News and information

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Making solar cells is like buttering bread March 22nd, 2019

Discoveries

Magnetoresistive sensors for near future innovative development March 22nd, 2019

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Making solar cells is like buttering bread March 22nd, 2019

Announcements

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Making solar cells is like buttering bread March 22nd, 2019

Energy

Making solar cells is like buttering bread March 22nd, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Layering titanium oxide's different mineral forms for better solar cells: Kanazawa University-led researchers layer two different mineral forms of titanium oxide to improve electron flow at the negative electrode for better metal halide perovskite-type solar cells March 2nd, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Quantum Dots/Rods

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Machine learning helps improving photonic applications September 28th, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

Individual quantum dots imaged in 3-D for first time February 28th, 2018

Solar/Photovoltaic

Making solar cells is like buttering bread March 22nd, 2019

Layering titanium oxide's different mineral forms for better solar cells: Kanazawa University-led researchers layer two different mineral forms of titanium oxide to improve electron flow at the negative electrode for better metal halide perovskite-type solar cells March 2nd, 2019

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project