Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanobelts support manipulation of light: Rice University lab discovers tiny gold bars have strong plasmonic properties

Gold nanobelts less than 100 nanometers wide, seen under a dark-field microscope, scatter light in specific colors depending on their cross-sectional aspect ratio -- width divided by height. The belts could be useful in biomedical and sensing applications.
(Credit Hafner Lab/Rice University)
Gold nanobelts less than 100 nanometers wide, seen under a dark-field microscope, scatter light in specific colors depending on their cross-sectional aspect ratio -- width divided by height. The belts could be useful in biomedical and sensing applications.

(Credit Hafner Lab/Rice University)

Abstract:
They look like 2-by-4s, but the materials being created in a Rice University lab are more suited to construction with light.

Researcher Jason Hafner calls them "nanobelts," microscopic strips of gold that could become part of highly tunable sensors or nanomedical devices.

Hafner, an associate professor of physics and astronomy and of chemistry, and his colleagues reported their discovery online this week in the American Chemical Society journal Nano Letters.

Nanobelts support manipulation of light: Rice University lab discovers tiny gold bars have strong plasmonic properties

Houston, TX | Posted on October 13th, 2011

Nanobelts represent a unique way to manipulate light at the microscopic scale. They join smaller nanoparticles like gold nanorods and nanoshells that can be tuned to absorb light strongly at certain wavelengths and then steer the light around or emit it in specific directions.

The effect is due to surface plasmons, which occur when free electrons in a metal or doped dielectric interact strongly with light. When prompted by a laser, the sun or other energy source, they oscillate like ripples on a pond and re-emit energy either as light or heat. They are the focus of much research for their potential benefits in biomedical applications, molecular sensing and microelectronics.

Nanobelts are unique because the plasmonic waves occur across their width, not along their length, Hafner said. "My intuition says that isn't likely. Why would you get a sharp resonance in the short direction when the electrons can go long? But that's what happens."

Nanobelts scatter light at a particular wavelength (or color), depending on the aspect ratio of their cross sections - width divided by height. That makes them highly tunable, Hafner said, by controlling that aspect ratio.

He was quick to point out his lab didn't make the first gold nanobelts. "We first searched the literature for a way to make a structure that might have a sharp resonance, because we wanted a large field enhancement," he said, referring to a technique he uses to characterize the effect of local environment on nanoparticle emissions.

The team found what it was looking for in a 2008 Langmuir paper by a Peking University team. "They made the same structure, but they didn't look too closely at the optical properties," he said. "They did beautiful work to discover the crystal structure and the growth direction, and they demonstrated the use of nanobelts in catalysis.

"As soon as we looked at the sample in a dark-field microscope, we instantly saw colors. We just couldn't believe it."

Hafner, a 1996 Rice alum who studied with the late Nobel laureate Richard Smalley, said growing nanobelts is a slow process. It takes 12 hours to synthesize a batch of nanobelts, which appear to grow in clusters from a central nucleus.

The team has grown nanobelts up to 100 microns long that range from basic square cross sections -- 25-by-25 nanometers -- to flattened, at 100 nanometers wide by 17 nanometers high. They found that the flatter the nanobelt, the more the scattered light shifted toward red.

"People have studied electrons moving the long way in these kinds of materials, but when they get too long the resonances detune out of the visible and the peaks become so broad that there's no sharp resonance anymore," Hafner said. "We're going across the nanobelt, so length doesn't matter. The nanobelt could be a meter long and still show sharp plasmon resonance."

Co-authors of the paper are graduate students Lindsey Anderson, Courtney Payne and Yu-Rong Zhen and Peter Nordlander, a professor of physics and astronomy and in electrical and computer engineering.

Support for the research came from the National Science Foundation and the Robert A. Welch Foundation.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanomedicine

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Sensors

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Photonics/Optics/Lasers

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic