Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Imec demonstrates CMOS integrated poly-SiGe piezoresistive pressure sensor

Abstract:
Imec realized an integrated poly-SiGe-based piezoresistive pressure sensor directly fabricated above 0.13 m copper (Cu) -backend CMOS technology. This represents not only the first integrated poly-SiGe pressure sensor directly fabricated above its readout circuit, but also the first time that a poly-SiGe MEMS device is processed on top of Cu-backend CMOS.

Imec demonstrates CMOS integrated poly-SiGe piezoresistive pressure sensor

Leuven, Belgium | Posted on October 10th, 2011

Polycrystalline SiGe has emerged as a promising MEMS structural material since it provides the desired mechanical properties at lower temperatures compared to poly-Si, allowing the post-processing on top of CMOS. The MEMS-last approach is the most interesting approach for CMOS-MEMS monolithic integration as it leads to smaller die areas and enables integrating the MEMS without introducing any changes in standard foundry CMOS processes. Comparing to alternative technologies, for example using the CMOS top interconnect layers to fabricate the MEMS device, poly-SiGe offers a more generic and flexible technology for above CMOS integration, thanks to the fact that the MEMS fabrication can be completely decoupled from the CMOS fabrication.

In the past, imec already proved the potential of poly-SiGe for MEMS above-aluminum-backend CMOS integration. However, aggressive interconnect scaling has led to the replacement of the traditional aluminum metallization by copper metallization, due to its lower resistivity and improved reliability. Our results now broaden the applications of poly-SiGe to the integration of MEMS with the advanced CMOS technology nodes.
Our integrated sensor (fully fabricated in imec) includes a surface-micromachined piezoresistive pressure sensor, with a poly-SiGe membrane and four poly-SiGe piezoresistors, and an instrumentation amplifier fabricated using imec's 0.13 m standard CMOS technology, with Cu- interconnects (two metal layers), oxide dielectric and tungsten-filled vias. To enable above-CMOS integration the maximum processing temperature of the complete sensor, including the poly-SiGe piezoresistors, is kept below 455C. Moreover, an appropriate passivation layer was included to protect the electronic circuit from the aggressive etch and deposition steps needed to fabricate the MEMS devices. The CMOS circuit showed no significant deterioration after the MEMS processing. Despite the low processing temperature, the poly-SiGe piezoresistive sensor alone (250x250m2 membrane) showed a sensitivity of around 2.5 mV/V/bar. The integrated sensor (same sensor + Cu-based CMOS amplifier underneath) showed a sensitivity of about 158 mV/V/bar, ~64 times higher than the stand-alone sensor.

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec's revenue (P&L) was 285 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

For more information, please click here

Contacts:
Hanne Degans
External Communications Officer
T: +32 16 28 17 69
M: +32 486 065 175


Barbara Kalkis
Maestro Marketing & PR
T: +1 408 996 9975

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Chip Technology

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Nanometrics to Participate in the 8th Annual CEO Investor Summit: Investor Event Held Concurrently with SEMICON West 2016 in San Francisco June 22nd, 2016

Sensors

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Drum beats from a one atom thick graphite membrane June 15th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic