Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene shows unusual thermoelectric response to light: Finding could lead to new photodetectors or energy-harvesting devices.

Photo: Len Rubenstein MIT
Photo: Len Rubenstein MIT

Abstract:
Graphene, an exotic form of carbon consisting of sheets a single atom thick, exhibits a novel reaction to light, MIT researchers have found: Sparked by light's energy, the material can produce electric current in unusual ways. The finding could lead to improvements in photodetectors and night-vision systems, and possibly to a new approach to generating electricity from sunlight.

Graphene shows unusual thermoelectric response to light: Finding could lead to new photodetectors or energy-harvesting devices.

Cambridge, MA | Posted on October 8th, 2011

This current-generating effect had been observed before, but researchers had incorrectly assumed it was due to a photovoltaic effect, says Pablo Jarillo-Herrero, an assistant professor of physics at MIT and senior author of a new paper published in the journal Science. The paper's lead author is postdoc Nathaniel Gabor; co-authors include four MIT students, MIT physics professor Leonid Levitov and two researchers at the National Institute for Materials Science in Tsukuba, Japan.

Instead, the MIT researchers found that shining light on a sheet of graphene, treated so that it had two regions with different electrical properties, creates a temperature difference that, in turn, generates a current. Graphene heats inconsistently when illuminated by a laser, Jarillo-Herrero and his colleagues found: The material's electrons, which carry current, are heated by the light, but the lattice of carbon nuclei that forms graphene's backbone remains cool. It's this difference in temperature within the material that produces the flow of electricity. This mechanism, dubbed a "hot-carrier" response, "is very unusual," Jarillo-Herrero says.

Such differential heating has been observed before, but only under very special circumstances: either at ultralow temperatures (measured in thousandths of a degree above absolute zero), or when materials are blasted with intense energy from a high-power laser. This response in graphene, by contrast, occurs across a broad range of temperatures all the way up to room temperature, and with light no more intense than ordinary sunlight.

The reason for this unusual thermal response, Jarillo-Herrero says, is that graphene is, pound for pound, the strongest material known. In most materials, superheated electrons would transfer energy to the lattice around them. In the case of graphene, however, that's exceedingly hard to do, since the material's strength means it takes very high energy to vibrate its lattice of carbon nuclei — so very little of the electrons' heat is transferred to that lattice.

Because this phenomenon is so new, Jarillo-Herrero says it is hard to know what its ultimate applications might be. "Our work is mostly fundamental physics," he says, but adds that "many people believe that graphene could be used for a whole variety of applications."

But there are already some suggestions, he says: Graphene "could be a good photodetector" because it produces current in a different way than other materials used to detect light. It also "can detect over a very wide energy range," Jarillo-Herrero says. For example, it works very well in infrared light, which can be difficult for other detectors to handle. That could make it an important component of devices from night-vision systems to advanced detectors for new astronomical telescopes.

The new work suggests graphene could also find uses in detection of biologically important molecules, such as toxins, disease vectors or food contaminants, many of which give off infrared light when illuminated. And graphene, made of pure and abundant carbon, could be a much cheaper detector material than presently used semiconductors that often include rare, expensive elements.

The research also suggests graphene could be a very effective material for collecting solar energy, Jarillo-Herrero says, because it responds to a broad range of wavelengths; typical photovoltaic materials are limited to specific frequencies, or colors, of light. But more research will be needed, he says, adding, "It is still unclear if it could be used for efficient energy generation. It's too early to tell."

"This is the absolute infancy of graphene photodetectors," Jarillo-Herrero says. "There are many factors that could make it better or faster," which will now be the subject of further research.

Philip Kim, an associate professor of physics at Columbia University who was not involved in this research, says the work represents "extremely important progress toward optoelectric and energy-harvesting applications" based on graphene. He adds that because of this team's work, "we now have better understanding of photo-generated hot electrons in graphene, excited by light."

The research was supported by the Air Force Office of Scientific Research, along with grants from the National Science Foundation and the Packard Foundation.

David L. Chandler, MIT News Office

####

For more information, please click here

Contacts:
77 Massachusetts Avenue, Room 11-400
Cambridge, MA 02139-4307
617.253.2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Graphene

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Discoveries

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Announcements

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Military

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Energy

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Solar/Photovoltaic

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project