Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > PKU researchers develop new single-wire solar cell

The structure of the solar cell
The structure of the solar cell

Abstract:
The development of new types of solar cells that are lighter and more flexible than conventional silicon-based designs will open up a range of new applications for photovoltaics. Dye-sensitized solar cells (DSSCs) offer these advantages as well as promising much lower fabrication costs. Cao Anyuan, Bian Zuqiang and colleagues from Peking University (PKU) have now expanded the range of possible applications of DSSCs by developing a single-wire design that could be assembled into large arrays.

PKU researchers develop new single-wire solar cell

Beijing, China | Posted on October 8th, 2011

Dye-sensitized solar cells are thin-film devices that can be fabricated from inexpensive and widely available compounds using relatively straightforward electrochemical processes. The structure of a DSSC itself is also quite simple, consisting of an anode and cathode immersed in an electrolyte. The anode of DSSCs is typically made of a mixture of a dye to absorb light and generate free positive and negative charges, and titanium dioxide to act as a conduit that allows the charges to travel to their respective electrodes and produce an electrical current.

Cao, Bian and their colleagues miniaturized the DSSC design down to the scale of micrometer-sized single wires by wrapping a titanium wire, the anode, with a layer of titanium dioxide tubes filled with a dye. Wrapped around this is an outer layer made of a carbon nanotube mesh, which serves as the cathode (see image). The carbon nanotubes are electrically conducting and have the benefit of being almost transparent, making them ideal for maximizing the amount of light that can reach the dye.

The wire-based DSSCs displayed promising solar conversion efficiency, at 1.6% for each wire. Although this level of efficiency remains far below the benchmark results for DSSCs, significant improvements are expected by optimizing the wire design, notes Bian. For example, the electrical conductivity of the carbon nanotube layer could be enhanced, and multiple wires could be integrated into a single device to produce larger wire meshes.

According to Bian, the possible applications of this DSSC structure could include photovoltaic 'textiles'. "The use of fiber-shaped cells would provide flexibility and the cells could be easily integrated into items such as clothes, bags and curtains," he says.

####

About Peking University
Peking University is a comprehensive and national key university. The campus, known as "Yan Yuan"(the garden of Yan), is situated at Haidian District in the western suburb of Beijing, with a total area of 2,743,532 square metres (or 274 hectares). It stands near to the Yuanmingyuan Garden and the Summer Palace.



Peking University is proud of its outstanding faculty, including 53 members of the Chinese Academy of Sciences (CAS), 7 members of the Chinese Academy of Engineering (CAE), and 14 members of the Third World Academy of Sciences (TWAS).



The university has effectively combined research on important scientific subjects with the training of personnel with a high level of specialized knowledge and professional skill as demanded by the country's socialist modernization. It strives not only for improvements in teaching and research work, but also for the promotion of interaction and mutual promotion among various disciplines.

For more information, please click here

Copyright © Peking University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Single-Wire Dye-Sensitized Solar Cells Wrapped by Carbon Nanotube Film Electrodes (Nano Letters)

Related News Press

News and information

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Thin films

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Picosun ALD breaks through in medical technology June 23rd, 2015

Dyesol Joins Solliance as an Industrial Partner June 17th, 2015

Discoveries

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Announcements

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Energy

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Solar/Photovoltaic

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Toward tiny, solar-powered sensors: New ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project