Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > PKU researchers develop new single-wire solar cell

The structure of the solar cell
The structure of the solar cell

Abstract:
The development of new types of solar cells that are lighter and more flexible than conventional silicon-based designs will open up a range of new applications for photovoltaics. Dye-sensitized solar cells (DSSCs) offer these advantages as well as promising much lower fabrication costs. Cao Anyuan, Bian Zuqiang and colleagues from Peking University (PKU) have now expanded the range of possible applications of DSSCs by developing a single-wire design that could be assembled into large arrays.

PKU researchers develop new single-wire solar cell

Beijing, China | Posted on October 8th, 2011

Dye-sensitized solar cells are thin-film devices that can be fabricated from inexpensive and widely available compounds using relatively straightforward electrochemical processes. The structure of a DSSC itself is also quite simple, consisting of an anode and cathode immersed in an electrolyte. The anode of DSSCs is typically made of a mixture of a dye to absorb light and generate free positive and negative charges, and titanium dioxide to act as a conduit that allows the charges to travel to their respective electrodes and produce an electrical current.

Cao, Bian and their colleagues miniaturized the DSSC design down to the scale of micrometer-sized single wires by wrapping a titanium wire, the anode, with a layer of titanium dioxide tubes filled with a dye. Wrapped around this is an outer layer made of a carbon nanotube mesh, which serves as the cathode (see image). The carbon nanotubes are electrically conducting and have the benefit of being almost transparent, making them ideal for maximizing the amount of light that can reach the dye.

The wire-based DSSCs displayed promising solar conversion efficiency, at 1.6% for each wire. Although this level of efficiency remains far below the benchmark results for DSSCs, significant improvements are expected by optimizing the wire design, notes Bian. For example, the electrical conductivity of the carbon nanotube layer could be enhanced, and multiple wires could be integrated into a single device to produce larger wire meshes.

According to Bian, the possible applications of this DSSC structure could include photovoltaic 'textiles'. "The use of fiber-shaped cells would provide flexibility and the cells could be easily integrated into items such as clothes, bags and curtains," he says.

####

About Peking University
Peking University is a comprehensive and national key university. The campus, known as "Yan Yuan"(the garden of Yan), is situated at Haidian District in the western suburb of Beijing, with a total area of 2,743,532 square metres (or 274 hectares). It stands near to the Yuanmingyuan Garden and the Summer Palace.



Peking University is proud of its outstanding faculty, including 53 members of the Chinese Academy of Sciences (CAS), 7 members of the Chinese Academy of Engineering (CAE), and 14 members of the Third World Academy of Sciences (TWAS).



The university has effectively combined research on important scientific subjects with the training of personnel with a high level of specialized knowledge and professional skill as demanded by the country's socialist modernization. It strives not only for improvements in teaching and research work, but also for the promotion of interaction and mutual promotion among various disciplines.

For more information, please click here

Copyright © Peking University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Single-Wire Dye-Sensitized Solar Cells Wrapped by Carbon Nanotube Film Electrodes (Nano Letters)

Related News Press

News and information

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Nanometrics and Rudolph Announce Merger Agreement to Create a Premier Semiconductor Process Control Company June 24th, 2019

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Thin films

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

New interaction between thin film magnets discovered: Physicists of Johannes Gutenberg University Mainz lay the foundations for new three-dimensional spin structures June 7th, 2019

Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies May 31st, 2019

Russian scientists investigate new materials for Li-ion batteries of miniature sensors: Researchers are developing new materials for solid-state thin-film Li-ion batteries for micro and nanodevices May 31st, 2019

Discoveries

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Announcements

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Nanometrics and Rudolph Announce Merger Agreement to Create a Premier Semiconductor Process Control Company June 24th, 2019

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Energy

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

Solar/Photovoltaic

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

UCI scientists create new class of two-dimensional materials: Fabrication could help unlock new quantum computing and energy technologies June 6th, 2019

Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals: Researchers demonstrate that perovskite crystals and quantum dots working together can increase stability of solar materials May 24th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project