Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > PKU researchers develop new single-wire solar cell

The structure of the solar cell
The structure of the solar cell

Abstract:
The development of new types of solar cells that are lighter and more flexible than conventional silicon-based designs will open up a range of new applications for photovoltaics. Dye-sensitized solar cells (DSSCs) offer these advantages as well as promising much lower fabrication costs. Cao Anyuan, Bian Zuqiang and colleagues from Peking University (PKU) have now expanded the range of possible applications of DSSCs by developing a single-wire design that could be assembled into large arrays.

PKU researchers develop new single-wire solar cell

Beijing, China | Posted on October 8th, 2011

Dye-sensitized solar cells are thin-film devices that can be fabricated from inexpensive and widely available compounds using relatively straightforward electrochemical processes. The structure of a DSSC itself is also quite simple, consisting of an anode and cathode immersed in an electrolyte. The anode of DSSCs is typically made of a mixture of a dye to absorb light and generate free positive and negative charges, and titanium dioxide to act as a conduit that allows the charges to travel to their respective electrodes and produce an electrical current.

Cao, Bian and their colleagues miniaturized the DSSC design down to the scale of micrometer-sized single wires by wrapping a titanium wire, the anode, with a layer of titanium dioxide tubes filled with a dye. Wrapped around this is an outer layer made of a carbon nanotube mesh, which serves as the cathode (see image). The carbon nanotubes are electrically conducting and have the benefit of being almost transparent, making them ideal for maximizing the amount of light that can reach the dye.

The wire-based DSSCs displayed promising solar conversion efficiency, at 1.6% for each wire. Although this level of efficiency remains far below the benchmark results for DSSCs, significant improvements are expected by optimizing the wire design, notes Bian. For example, the electrical conductivity of the carbon nanotube layer could be enhanced, and multiple wires could be integrated into a single device to produce larger wire meshes.

According to Bian, the possible applications of this DSSC structure could include photovoltaic 'textiles'. "The use of fiber-shaped cells would provide flexibility and the cells could be easily integrated into items such as clothes, bags and curtains," he says.

####

About Peking University
Peking University is a comprehensive and national key university. The campus, known as "Yan Yuan"(the garden of Yan), is situated at Haidian District in the western suburb of Beijing, with a total area of 2,743,532 square metres (or 274 hectares). It stands near to the Yuanmingyuan Garden and the Summer Palace.



Peking University is proud of its outstanding faculty, including 53 members of the Chinese Academy of Sciences (CAS), 7 members of the Chinese Academy of Engineering (CAE), and 14 members of the Third World Academy of Sciences (TWAS).



The university has effectively combined research on important scientific subjects with the training of personnel with a high level of specialized knowledge and professional skill as demanded by the country's socialist modernization. It strives not only for improvements in teaching and research work, but also for the promotion of interaction and mutual promotion among various disciplines.

For more information, please click here

Copyright © Peking University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Single-Wire Dye-Sensitized Solar Cells Wrapped by Carbon Nanotube Film Electrodes (Nano Letters)

Related News Press

News and information

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Thin films

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses August 6th, 2014

New Material Allows for Ultra-Thin Solar Cells August 4th, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Discoveries

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Announcements

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Energy

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

Used-cigarette butts offer energy storage solution August 5th, 2014

Solar/Photovoltaic

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

New Material Allows for Ultra-Thin Solar Cells August 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE