Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 'Mirage-effect' helps researchers hide objects

Abstract:
Scientists have created a working cloaking device that not only takes advantage of one of nature's most bizarre phenomenon, but also boasts unique features; it has an 'on and off' switch and is best used underwater.

The researchers, from the University of Dallas, Texas, have demonstrated the device's ability to make objects disappear in a fascinating video shown here:



'Mirage-effect' helps researchers hide objects

London, UK | Posted on October 3rd, 2011

This novel design, presented today, Tuesday 4 September, in IOP Publishing's journal Nanotechnology, makes use of sheets of carbon nanotubes (CNT) - one-molecule-thick sheets of carbon wrapped up into cylindrical tubes.

CNTs have such unique properties, such as having the density of air but the strength of steel, that they have been extensively studied and put forward for numerous applications; however it is their exceptional ability to conduct heat and transfer it to surrounding areas that makes them an ideal material to exploit the so-called "mirage effect".

The mirage effect, frequently observed in deserts or on long roads in the summer, is an optical phenomenon in which light rays are bent to produce a displaced image of distant objects or the sky.

The most common example of a mirage is when an observer appears to see pools of water on the ground. This occurs because the air near the ground is a lot warmer than the air higher up, causing lights rays to bend upward towards the viewer's eye rather than bounce off the surface.

This results in an image of the sky appearing on the ground which the viewer perceives as water actually reflecting the sky; the brain sees this as a more likely occurrence.

Through electrical stimulation, the transparent sheet of highly aligned CNTs can be easily heated to high temperatures. They then have the ability to transfer that heat to its surrounding areas, causing a steep temperature gradient. Just like a mirage, this steep temperature gradient causes the light rays to bend away from the object concealed behind the device, making it appear invisible.

With this method, it is more practical to demonstrate cloaking underwater as all of the apparatus can be contained in a petri dish. It is the ease with which the CNTs can be heated that gives the device its unique 'on and off' feature.

Lead-author, Dr Ali Aliev, said, "Using these nanotube sheets, concealment can be realized over the entire optical range and rapidly turned on-and-off at will, using either electrical heating or a pulse of electromagnetic radiation.

"The research results also provide useful insights into the optimization of nanotube sheets as thermoacoustic projectors for loud speaker and sonar applications, where sound is produced by heating using an alternating electrical current."

An Institute of Physics spokesperson said, "It is remarkable to see this cloaking device demonstrated in real life and on a workable scale. The array of applications that could arise from this device, besides cloaking, is a testament to the excellent work of the authors."

From Tuesday 4 September, this paper can be downloaded from http://iopscience.iop.org/0957-4484/22/43/435704

####

About Institute of Physics
The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications.

IOP Publishing

IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to ioppublishing.org/

For more information, please click here

Contacts:
Michael Bishop

44 01-179-301-032

Copyright © Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The published version of the paper "Mirage effect from thermally modulated transparent carbon nanotube sheet" Aliev A et al 2011 22 435704 will be freely available online from Tuesday 4 September. It will be available at:

Related News Press

News and information

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

Videos/Movies

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchersí crystal-production insights resolve manufacturing difficulty January 29th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

Physics

New pathway to valleytronics January 27th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Nanotubes/Buckyballs

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Discoveries

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Announcements

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE