Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researcher Uses Nanoparticles to Make DNA Analysis 1,000 Times Faster

Abstract:
A University of Arkansas researcher has patented a process that reduces the time it takes to perform DNA analysis from hours to minutes. This development could contribute to many areas of health care and law enforcement, including diagnosing and treating disease, developing and testing new vaccines and forensic identification.

Researcher Uses Nanoparticles to Make DNA Analysis 1,000 Times Faster

Fayetteville, AR | Posted on October 3rd, 2011

Donald K. Roper, associate professor of chemical engineering, explained that the ultimate goal of his research is to develop a credit-card-sized device to be used in a doctor's office or at a crime scene to quickly analyze samples of DNA. "That's the power of being able to do this on a really tiny scale," he said.

To analyze DNA, scientists must often make a tiny sample large enough to work with. To do this, they use a process called polymerase chain reaction, or PCR. Roper, who holds the Charles W. Oxford Endowed Professorship in Emerging Technologies, has invented a way to perform this reaction thousands of times faster than traditional methods.

Roper's process, which he developed while working at the University of Utah, uses gold nanoparticles to increase the efficiency of the chain reaction. During the reaction, strands of DNA are heated and cooled in cycles. When the samples are heated, the two strands of a DNA double helix come apart, and when the temperature is lowered, an enzyme called polymerase zips each strand to other, complementary strands, forming two new DNA helixes.

These copies are then heated and cooled again, doubling each time until the desired amount of DNA has been produced.

Roper's method reduces the time involved in these cycles from minutes to milliseconds, which means that a DNA sample could be analyzed within minutes rather than hours. By associating the DNA and enzyme with a gold nanoparticle and then exciting the nanoparticle with a light source or laser beam, Roper can target temperature changes to the area immediately around the DNA. This allows researchers to raise or lower the temperature more quickly. In addition, the process can be used to analyze the DNA during the reaction.

"We can use the laser light and the gold nanoparticles to do both the amplification and the analysis simultaneously," explained Roper. "The electromagnetic field around the nanoparticle is strong enough that it can sense whether or not the strand that we're interested in is there. The laser induces the field and then a detector assays the difference in the field."

Roper's research has implications for many scientific fields. "Genomics underscores everything of interest to biology: gene sequencing, disease diagnostics, pharmaceutical development and genetic analysis," he explained. "DNA is the basis of inheritance for the cell, and the degree of transcription of the DNA determines how a cell will function. This is a tool that examines these processes."

####

For more information, please click here

Contacts:
Donald Roper
associate professor
chemical engineering
College of Engineering
479-575-6691


Camilla Medders
director of communications
College of Engineering
479-575-5697

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

QuantuMDx announce prototype handheld lab for 15 minute malaria diagnosis and drug resistance testing April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Discoveries

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

Announcements

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Patents/IP/Tech Transfer/Licensing

Harris & Harris Group Notes Mersana's Collaboration Agreement With Subsidiary of Takeda Pharmaceutical Co. April 8th, 2014

Nanoparticles cause cancer cells to self-destruct April 3rd, 2014

A*STAR's Simtech collaboration agreements to accelerate the growth and development of the microfluidics industry April 1st, 2014

Dolomite releases novel droplet-on-demand sequencing and droplet generation microfluidic system April 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE