Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Hydrogen released to fuel cell more quickly when stored in metal nanoparticles

The TU Delft Forze IV hydrogen race car
The TU Delft Forze IV hydrogen race car

Abstract:
Researchers from TU Delft and VU University Amsterdam have demonstrated that the size of a metal alloy nanoparticle influences the speed with which hydrogen gas is released when stored in a metal hydride. The smaller the size of the nanoparticle, the greater the speed at which the hydrogen gas makes its way to the fuel cell. This knowledge can be used to improve the efficiency of hydrogen storage in vehicles, which brings the large-scale implementation of clean hydrogen-powered vehicles another step closer. The researchers publish their findings in the October issue of the scientific journal Advanced Energy Materials.

Hydrogen released to fuel cell more quickly when stored in metal nanoparticles

The Netherlands | Posted on September 30th, 2011

Hydrogen heaven

On 27 September Dutch Minister of Infrastructure and the Environment, Ms Schultz van Haegen, announced she will earmark 5 million Euros to stimulate hydrogen transport in the Netherlands. According to the Minister the Netherlands and neighbouring countries have all it takes to become a ‘hydrogen heaven'. In July 2011, the German car manufacturer Daimler announced its intention to build twenty new hydrogen fuelling stations along Germany's motorways. Hydrogen is back on the agenda. Hydrogen gas is currently stored in a vehicle fuel tank at 700 bar pressure. Fuelling stations thus require high-pressure pumps to fill these tanks and these systems consume a lot of energy.

Magnesium

There are thus good reasons for finding alternative hydrogen storage techniques. Hydrogen can be absorbed in high densities in metals such as magnesium, without the need for high pressure. However, the disadvantage is that releasing the hydrogen again is a very difficult and very slow process. One way of speeding up the release of the hydrogen is to use magnesium nanoparticles that are fixed in a matrix to prevent them from aggregating.

Nanoparticles in a matrix

Professor of Materials for Energy Conversion and Storage, Bernard Dam, and his colleagues at TU Delft and VU University Amsterdam have demonstrated experimentally that the interaction between the nanoparticles and the matrix can cause the hydrogen gas to be released faster. Using models consisting of thin layers of magnesium and titanium, they show how the pressure of the hydrogen being released from the magnesium increases as the layers become thinner. This means that it indeed makes sense to store hydrogen in nanoparticles in a matrix. The choice of matrix determines to what extent the hydrogen desorption pressure increases. The researchers published their findings in the October 2011 edition of the scientific journal Advanced Energy Materials.

Hybrid

Efficient and affordable hydrogen storage techniques can play an important role in the large-scale adoption of hydrogen fuel cells. Bernard Dam foresees the development of hybrid vehicles that use batteries for short distances but switch to hydrogen for long distances: ‘Your electric motor will be powered by batteries inside the city, and by hydrogen when you go further afield.'

The research was funded by the ACTS Sustainable Hydrogen Program of the Netherlands Organisation for Scientific Research.

Full bibliographic informationLennard P.A. Mooij, Andrea Baldi, Christiaan Boelsma, Kun Shen, Marnix Wagemaker, Yevheniy Pivak, Herman Schreuders, Ronald Griessen, Bernard Dam. Interface Energy Controlled Thermodynamics of Nanoscale Metal Hydrides.Advanced Energy Materials. Volume 1, issue 5, pages 754-758, October 2011.

####

For more information, please click here

Contacts:
Bernard Dam
Professor of Materials for Energy Conversion and Storage
Faculty of Applied Sciences
TU Delft
+31 (0) 15 278 4342


Ineke Boneschansker, science information officer at TU Delft. +31 (0) 15 278 8499,

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Discoveries

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Announcements

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Energy

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Automotive/Transportation

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

Metallic hydrogen, once theory, becomes reality: Harvard physicists succeed in creating 'the holy grail of high-pressure physics' January 28th, 2017

Nanoscale view of energy storage January 16th, 2017

Fuel Cells

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

It's basic: Alternative fuel cell technology reduces cost: Study sets performance targets for metal-free fuel cell membrane December 13th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Research partnerships

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project