Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Hydrogen released to fuel cell more quickly when stored in metal nanoparticles

The TU Delft Forze IV hydrogen race car
The TU Delft Forze IV hydrogen race car

Abstract:
Researchers from TU Delft and VU University Amsterdam have demonstrated that the size of a metal alloy nanoparticle influences the speed with which hydrogen gas is released when stored in a metal hydride. The smaller the size of the nanoparticle, the greater the speed at which the hydrogen gas makes its way to the fuel cell. This knowledge can be used to improve the efficiency of hydrogen storage in vehicles, which brings the large-scale implementation of clean hydrogen-powered vehicles another step closer. The researchers publish their findings in the October issue of the scientific journal Advanced Energy Materials.

Hydrogen released to fuel cell more quickly when stored in metal nanoparticles

The Netherlands | Posted on September 30th, 2011

Hydrogen heaven

On 27 September Dutch Minister of Infrastructure and the Environment, Ms Schultz van Haegen, announced she will earmark 5 million Euros to stimulate hydrogen transport in the Netherlands. According to the Minister the Netherlands and neighbouring countries have all it takes to become a ‘hydrogen heaven'. In July 2011, the German car manufacturer Daimler announced its intention to build twenty new hydrogen fuelling stations along Germany's motorways. Hydrogen is back on the agenda. Hydrogen gas is currently stored in a vehicle fuel tank at 700 bar pressure. Fuelling stations thus require high-pressure pumps to fill these tanks and these systems consume a lot of energy.

Magnesium

There are thus good reasons for finding alternative hydrogen storage techniques. Hydrogen can be absorbed in high densities in metals such as magnesium, without the need for high pressure. However, the disadvantage is that releasing the hydrogen again is a very difficult and very slow process. One way of speeding up the release of the hydrogen is to use magnesium nanoparticles that are fixed in a matrix to prevent them from aggregating.

Nanoparticles in a matrix

Professor of Materials for Energy Conversion and Storage, Bernard Dam, and his colleagues at TU Delft and VU University Amsterdam have demonstrated experimentally that the interaction between the nanoparticles and the matrix can cause the hydrogen gas to be released faster. Using models consisting of thin layers of magnesium and titanium, they show how the pressure of the hydrogen being released from the magnesium increases as the layers become thinner. This means that it indeed makes sense to store hydrogen in nanoparticles in a matrix. The choice of matrix determines to what extent the hydrogen desorption pressure increases. The researchers published their findings in the October 2011 edition of the scientific journal Advanced Energy Materials.

Hybrid

Efficient and affordable hydrogen storage techniques can play an important role in the large-scale adoption of hydrogen fuel cells. Bernard Dam foresees the development of hybrid vehicles that use batteries for short distances but switch to hydrogen for long distances: ‘Your electric motor will be powered by batteries inside the city, and by hydrogen when you go further afield.'

The research was funded by the ACTS Sustainable Hydrogen Program of the Netherlands Organisation for Scientific Research.

Full bibliographic informationLennard P.A. Mooij, Andrea Baldi, Christiaan Boelsma, Kun Shen, Marnix Wagemaker, Yevheniy Pivak, Herman Schreuders, Ronald Griessen, Bernard Dam. Interface Energy Controlled Thermodynamics of Nanoscale Metal Hydrides.Advanced Energy Materials. Volume 1, issue 5, pages 754-758, October 2011.

####

For more information, please click here

Contacts:
Bernard Dam
Professor of Materials for Energy Conversion and Storage
Faculty of Applied Sciences
TU Delft
+31 (0) 15 278 4342


Ineke Boneschansker, science information officer at TU Delft. +31 (0) 15 278 8499,

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Discoveries

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Announcements

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Synthesis of Nanostructures with Controlled Shape, Size in Iran September 22nd, 2014

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Energy

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Automotive/Transportation

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Fuel Cells

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Media Advisory: Minister Rempel to Announce Support for Alberta's Nanotechnology Sector June 20th, 2014

Evolution of a Bimetallic Nanocatalyst June 6th, 2014

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE