Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'Next-generation' optical tweezers trap tightly without overheating: Improved device eliminates a barrier to handling nanoscale particles

This is a false-color SEM image of the gold nano-pillars.

Credit: Courtesy of Ken Crozier.
This is a false-color SEM image of the gold nano-pillars.

Credit: Courtesy of Ken Crozier.

Abstract:
Engineers at Harvard have created a device that may make it easier to isolate and study tiny particles such as viruses.

'Next-generation' optical tweezers trap tightly without overheating: Improved device eliminates a barrier to handling nanoscale particles

Cambridge, MA | Posted on September 26th, 2011

Their plasmonic nanotweezers, revealed this month in Nature Communications, use light from a laser to trap nanoscale particles. The new device creates strong forces more efficiently than traditional optical tweezers and eliminates a problem that caused earlier setups to overheat.

"We can get beyond the limitations of conventional optical tweezers, exerting a larger force on a nanoparticle for the same laser power," says principal investigator Ken Crozier, Associate Professor of Electrical Engineering at the Harvard School of Engineering and Applied Sciences (SEAS).

"Until now, overheating has been a major problem with tweezers based on surface plasmons. What we've shown is that you can get beyond that limitation by building a plasmonic nanotweezer with an integrated heat sink."

Optical tweezers have been an essential tool in biophysics for several decades, often used for studying cellular components such as molecular motors. Researchers can trap and manipulate the proteins that whip a flagellum, for example, and measure the force of its swimming motion.

But optical tweezers have drawbacks and limits, so researchers like Crozier are perfecting what might be called the "next-generation" model: plasmonic nanotweezers.

To create conventional optical tweezers, which were invented at Bell Labs in the 1980s, scientists shine a laser through a microscope lens, which focuses it into a very tight spot. The light, which is made up of electromagnetic waves, creates a gradient force at that focused spot that can attract a tiny particle and hold it within the beam for a short period of time—until random motion, radiation pressure, or other forces knock it out.

The trouble with these optical tweezers is that a lens cannot focus the beam any smaller than half the wavelength of the light. If the targeted particle is much smaller than the focal spot, the trapping will be imprecise.

At the same time, the focal size limit places an upper limit on the gradient force that can be generated. A stronger force is necessary for trapping nanoscale particles, relative to larger, microscopic particles, so conventional optical tweezers must use a very high-powered laser to trap the tiniest targets.

To overcome these problems, researchers in applied physics discovered a few years ago that they could enhance the trapping field by focusing the laser onto an array of nanoscale gold disks. The light excites the electrons at the surface of the metal, creating rapid waves of electromagnetic charge called plasma oscillations, resulting in "hot spots" of enhanced fields around the edges of the disk.

In other researchers' designs, the tiny gold disks were arrayed on a sheet of glass, and the whole setup was submerged in water with the target particles. In tests with those devices, one problem was that the brightest hotspots were at the base of the pillars, partially inside the glass, where the particles could never be trapped. A bigger problem, as Crozier's team discovered, was that unless they kept the laser power very low, the water boiled.

The Harvard team has solved both problems by replacing the glass with a piece of silicon coated in copper and then gold, with raised gold pillars. These materials are much more thermally conductive than glass, so they act as a heat sink.

"The gold, copper, and silicon under the pillars act just like the heat sink attached to the chip in your PC, drawing the heat away," says lead author Kai Wang (Ph.D. '11), who completed the work at SEAS and is now a postdoctoral fellow at the Howard Hughes Medical Institute.

The new device reduces the water heating by about 100-fold and produces hotspots at the top edges of the pillars, where Crozier's team was able to trap polystyrene balls as small as 110 nanometers.

In an unusual twist, the team discovered that they were able to rotate the trapped particles around the pillars by rotating the linear polarizer on the optical table where they conducted the experiments. Going further, they replaced the linear polarizer with a circular one and found that the particle automatically and continuously traveled around the pillar.

As the electromagnetic field circled the pillar, it created an optical force that pushed the particle. Interestingly, despite the fact that the electromagnetic field traveled at about 1014 rotations per second, the balance between the optical force and the fluid drag resulted in a particle velocity of about 5 rotations per second, effectively a terminal velocity.

"This phenomenon seems to be entirely novel," says Crozier. "People have trapped particles before, but they've never done anything like that."

As tools for trapping and manipulating nanoparticles become more advanced, the potential applications in biophysics are extensive. One remaining challenge, however, is the researchers' ability to detect and quantify the motion of such tiny particles.

"It's going to be harder and harder to precisely track the center of the particle when we do these manipulations," says Crozier. "Progress in the realm of sensing tools will need to keep up."

Crozier and Wang's co-authors were Ethan Schonbrun, a former research associate, and Paul Steinvurzel, a former postdoctoral researcher, both from Crozier's lab at SEAS. The work was supported by the National Science Foundation, the Defense Advanced Research Projects Agency, and the U.S. Department of Energy.

####

For more information, please click here

Contacts:
Caroline Perry

617-496-1351

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Nanomedicine

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Discoveries

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Tools

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Military

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanobiotechnology

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Photonics/Optics/Lasers

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project